

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributions

If you are interested in contributing, here are some ground rules:

	Entity Component System is based on some principles. Read and apply them to your contributions

	Follow naming & style conventions in the project

	Everything must have test coverage. (PRs with insufficient test coverage will be rejected)

	Please add appropriate release notes in the (Next Version) section of ReleaseNotes.md

	Pull requests must be made against master (Not stable, which is the default)

All contributions are subject to the Unity Contribution Agreement(UCA) [https://unity3d.com/legal/licenses/Unity_Contribution_Agreement]

By making a pull request, you are confirming agreement to the terms and conditions of the UCA, including that your Contributions are your original creation and that you have complete right and authority to make your Contributions.

Once you have a change ready following these ground rules. Simply make a pull request in Github

 Entity Component System copyright © 2017 Unity Technologies ApS

Licensed under the Unity Companion License for Unity-dependent projects–see Unity Companion License [https://unity3d.com/legal/licenses/Unity_Companion_License].

Unless expressly provided otherwise, the Software under this license is made available strictly on an “AS IS” BASIS WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. Please review the license for details on these and other terms and conditions.

Welcome

Welcome to the Entity Component System and C# Job System samples repository!

Here you can find the resources required to start building with these new systems today.

We have also provided a new forum where you can find more information and share your experiences with these new systems.

Click here to visit the forum [https://unity3d.com/performance-by-default]

What is in the build

We have been working on a new high performance multithreaded system, that will make it possible for games to fully utilise the multicore processors available today without heavy programming headache. This is possible thanks to the new Entity Component System which provides a way to write performant code by default. Paired with the C# Job System and a new math-aware backend compiler technology named Burst. Unity can produce highly optimised code for the particular capabilities of the platform you’re compiling for.

Download the beta build required here [https://unity3d.com/unity/beta-download]

Entity Component System

Offers a better approach to game design that allows you to concentrate on the actual problems you are solving: the data and behavior that make up your game. It leverages the C# Job System and Burst Compiler enabling you to take full advantage of today’s multicore processors. By moving from object-oriented to data-oriented design it will be easier for you to reuse the code and easier for others to understand and work on it

The Entity Component System ships as an experimental package in 2018.1 and later, and we’ll continue to develop and release new versions of the package in the 2018.x cycle. It is important to stress that the Entity Component System is not production ready

C# Job System

The new C# Job System takes advantage of multiple cores in a safe and easy way. Easy, as it’s designed to open this approach up to user scripts and allows users to write safe, fast, jobified code while providing protection from some of the pitfalls of multi-threading such as race conditions.

The C# Job System ships in 2018.1.

Further sample projects on the C# Job System can be found here [https://github.com/stella3d/job-system-cookbook]

Burst

Burst is a new LLVM based math-aware backend Compiler Technology makes things easier for you. It takes the C# jobs and produces highly-optimized code taking advantage of the particular capabilities of the platform you’re compiling for.

Burst ships as an experimental package in 2018.1, and we’ll continue to develop and release new versions of the package in the 2018.x cycle. For the current package release, Burst only works in the Unity editor. It is important to stress that Burst is not production ready

Watch Joachim Ante present these new systems at Unite Austin [https://youtu.be/tGmnZdY5Y-E]

Samples

To help you get started, we have provided this repository of examples for learning how to to write systems at scale.

The TwoStickShooter project

This is a set of projects that demonstrates different approaches with the MonoBehaviour, Hybrid Entity Component System and Pure Entity Component System. This is a good starting point to understand how the Entity Component System paradigm works.

Installation guide for blank ECS project

Note: If you want to have multiple versions of Unity on one machine then you need to follow these instructions [https://docs.unity3d.com/462/Documentation/Manual/InstallingMultipleVersionsofUnity.html]. The manual page is a bit old, in terms of which versions of Unity it describes, but the instructions are otherwise correct.

	Make sure you have installed the required version of Unity.

	Open Unity on your computer.

	Create a new Unity project and name it whatever you like.

Note: In Unity 2018.1 the new Project window is a little different because it offers you more than just 2D and 3D options.

	Once the project is created then navigate in the Editor menu to: Edit > Project Settings > Player > Other Settings then set Scripting Runtime Version to: 4.x equivalent. This will cause Unity to restart.

	Then navigate to Window > Package Manager and select the Entities package and install it. This is also where you update the package to a newer version.

Documentation

Looking for information on how to get started or have specific questions? Visit our ECS & Job system documentation

Go to documentation

0.0.18

New Features

Upgrade guide

Changes

	Restructured documentation and revised a lot of content. New reference page contains an index of topics. Some pages still contain stubs to be filled in, and other pages moved to under_review section if they will be subject to further, more drastic revisions.

Fixes

	Fixed a race condition in NativeQueue causing memory corruption leading to editor crashes

0.0.17

New Features

	Entity Debugger now has an option to show chunk info for any given query. Click “Chunk Info” in the upper right to see chunk usage data for each archetype.

Upgrade guide

Changes

	Updated burst to 0.2.4-preview.33

Fixes

	Fixed bug when instantiating prototype with DynamicBuffer where data would be written out of bounds and could cause a crash.

	Fixed NotSupportedException when DefaultWorldInitialization fails to load a type from a dynamic assembly.

	Fixed an issue where EntityDebugger caused a stack overflow when determining the name of types nested in generic types

0.0.16

New Features

	Added virtual ValidateSerializedData() method to ComponentDataWrapper<T>and SharedComponentDataWrapper<T>, which allows you to sanitize the wrapper’s serialized data.

Upgrade guide

Changes

	Reverted hotfix in 0.0.14 that made ComponentDataWrapperBase.OnValidate() public and ComponentDataWrapper<T>.m_SerializedData protected; both are private again.

	CopyTransformToGameObjectSystem and CopyTransformFromGameObjectSystem now execute in edit mode.

Fixes

	Fixed selection not working in Galactic Conquest sample.

	Fixed errors in HierarchyBrokenExample, HierarchyExample, and RotationExample.

	Fixed regression introduced in 0.0.14 that caused typing values for a RotationComponent in the Inspector to re-normalize with every (xyzw) component entry.

	Fixed all warnings in samples and packages.

	Fixed bug that prevented entering Prefab isolation mode while in play mode in 2018.3, if the Prefab contained BaseComponentDataWrapper components.

0.0.15

New Features

Upgrade guide

Changes

	By default, EntityDebugger doesn’t show inactive systems (systems which have never run). You can choose to show them in the World dropdown.

	Fixed an issue where closing the EntityDebugger’s Filter window would throw an exception

	The Unity.Entities assembly no longer references the UnityEngine.Component type directly. If you create a build that strips the Unity.Entities.Hybrid assembly, but you need to create a ComponentType instance from a UnityEngine.Component-derived type, you must first manually call TypeManager.RegisterUnityEngineComponentType(typeof(UnityEngine.Component)) somewhere in your initialization code.

	EntityCommandBuffer now records which system the commandbuffer was recorded in and which barrier it is played back and it includes it when an exception is thrown on playback of the command buffer.

Fixes

	Fixed memory corruption where EntityCommandBuffer.AddComponent with zero sized components overwriting memory of other components. (This is a regression that was introduced in 0.0.13_

0.0.14

Fixes

	Fixed a bug which was causing some of the samples to not work correctly

0.0.13

New Features

	Added additional warnings to the Inspector for ComponentDataWrapper and SharedComponentDataWrapper types related to multiple instances of the same wrapper type.

Upgrade guide

	All ComponentDataWrapper types shipped in this package are now marked with DisallowMultipleComponent in order to prevent unexpected behavior, since an Entity may only have a single component of a given type. If you have any GameObjects with multiples of a given ComponentDataWrapper type, you must remove the duplicates. (Due to an implentation detail in the current hybrid serialization utility, SharedComponentDataWrapper types cannot be marked as such. This issue will be addressed in a future release.)

Changes

	ComponentDataWrapperBase now implements protected virtual OnEnable() and protected virtual OnDisable(). You must override these methods and call the base implementation if you had defined them in a subclass.

	GameObjectEntity OnEnable() and OnDisable() are now protected virtual, instead of public.

Fixes

	Fixed bug where component data was not immediately registered with EntityManager when adding a ComponentDataWrapper to a GameObject whose GameObjectEntity had already been enabled.

	Fixed a bug where EntityManager.AddComponentData would throw an exception when adding a zero sized / tag component.

	Fixed hard crash in SerializeUtilityHybrid.SerializeSharedComponents() when the SharedComponentDataWrapper for the SharedComponentData type was marked with DisallowMultipleComponent. It now throws an exception instead.

0.0.12

New Features

Upgrade guide

	OnCreateManager(int capacity) -> OnCreateManager(). All your own systems have to be changed to follow the new signature.

Changes

	Removed capacity parameter from from ScriptBehaviourManager.OnCreateManager.

	EntityDebugger now displays the declaring type for nested types

	IncrementalCompiler is no longer a dependency on the entities package. If you want to continue to use it you need to manually include it from the package manager UI for your project.

	EntityCommandBuffer.Concurrent playback is now deterministic. Playback order is determined by the new jobIndex parameter accepted by all public API methods, which must be a unique ID per job (such as the index passed to Execute() in an IJobParallelFor).

Fixes

	Fixed bug where ComponentDataWrapper fields spilled out of their area in the Inspector.

	ComponentDataWrapper for empty data types (i.e. tags) no longer displays error in Inspector if wrapped type is not serializable.

	Fixed an issue where EntityDebugger was slow if you scrolled down past 3 million entities

0.0.11

New Features

	Global Disabled component. Any component data associated with same entity referenced by Disabled component will be ignored by all system updates.

	Global Prefab component. Same behavior as Disabled component, except when an Entity associated with a Prefab component is Instantiated, the Prefab component is not present in the created archetype.

	EntityCommandBuffer.Instantiate API has been added

	Added custom editor for ComponentDataWrapper<T> and SharedComponentDataWrapper<T>, which will display an error in the Inspector if the encapsulated data type is not marked as serializable

	new IJobProcessComponentDataWithEntity job type extends IJobProcessComponentData and passes Entity & int foreachIndex. This makes it possible to use it in jobs using EntityCommandBuffer.

	BufferDataFromEntity renamed to BufferFromEntity. ComponentSystem.GetBufferArrayFromEntity has been renamed to ComponentSystem.GetBufferFromEntity.

Changes

	Serialized component data for ComponentDataWrapper<T> and SharedComponentDataWrapper<T> classes now appears in the Inspector without a foldout group

	IJobProcessComponentData supports up to 4 components now.

	IJobProcessComponentData.Schedule function no longers takes the number of batch iteration count. Batch iteration count is now always implicit to be the size of a whole chunk. This requires changing all code using IJobProcessComponentData.

	IJobProcessComponentData.ScheduleSingle can be used to execute IJobProcessComponentData in a single job. IJobProcessComponentData.Schedule on the other hand by default schedules parallel for jobs.

	ForEachComponentGroupFilter has been removed. We recommend ArchetypeChunk API as a replacement (Documentation/content/chunk_iteration.md)

	TransformSystem is now an abstract class and no longer have a generic <T> parameter

	Removed MeshCulledComponent & MeshCullingComponent. They were accidentally still left after the rewrite of the InstanceRendererSystem in preview 11.

Fixes

	Fixed bug where Value setter on ComponentDataWrapper<T> or SharedComponentDataWrapper<T> did not push changes back to EntityManager (fixes the inability to flush changes via Value setter + Undo.RecordObject() while Inspector was drawing)

	Removed sync point in GetComponentGroup resulting in two IJobProcessComponentData in the same system to fail on first exectuion.

	Added more robust checks for what defines a valid IComponentData (must be blittable / must be a struct etc)

	Fixed a bug with TransformSystem jobs (e.g RootLocalToWorld) not being compiled by burst for standalone players

0.0.10

New Features

	Dynamic Buffers (FixedArray functionality has been removed.)

	Chunk Iteration

	TransformSystem

	Note: Completely incompatible with previous version.

	Some Components “downgraded” to Samples.Common (not part of Unity.Transforms) - MoveForward, MoveSpeed, Heading, RotationSpeed

	Transform2D Removed.

	SystemStateComponents

	EntityCommandBuffer.Concurrent added to support command buffer recording in parallel for-type jobs

	EntityManager.MoveEntitiesFrom optimizations (Moving real world scene with 50k entities takes less than 1ms now)

	Unity.Entities.Serialization API for writing binary scene format (No backwards compatibility, but incredibly fast load speed)

Changes

	Unity 2018.1 is no longer supported. The Entities package now requires a minimum version of 2018.2f1

	EntityDebugger is now much faster when structural changes affect the list of entities being viewed.

	Moved EntityDebugger to Window/Analysis submenu

	EntityDebugger shows EntityArchetypeQuery fields in addition to ComponentGroups, in order to show useful contents for systems that use chunk iteration.

	EntityDebugger shows systems in the order they appear in the player loop

0.0.9

New Features

	Galactic Conquest sample added

	Left click to select planets of the same color

	Right click to send ships from the selected planets to the planet under the mouse

	Can be set to play by itself if running the SceneSwitcher scene

	GravityDemo sample added

	Press 1-7 on the keyboard while it’s running to change to different simulations

	Left click to spawn new asteroids from the camera

	While holding right click, move the mouse and use AWSD buttons to control the camera

0.0.8

New Features

	EntityCommandBuffer.Concurrent added to support command buffer recording in parallel for-type jobs

Changes

	Fixed the check for blittable types in NativeHashMap and NativeMultiHashMap values

	Change deprecated attribute [ComputeJobOptimization] to [BurstCompile] (from namespace Unity.Burst)

	Fixed bug with entity batch deletes (#149)

0.0.7

New Features

	New system for frustum culling meshes processed by MeshInstanceRendererSystem. Add a MeshCullingComponent to the entity and it will only be rendered when it is in view. The culling system does not take shadows into account.

	New system for LOD of meshes rendered with MeshInstanceRendererSystem.

	MeshLODGroupComponent defines the lod sizes and active lod.

	MeshLODComponent references an Entity with a MeshLODGroupComponent and enables / disables itself based on the specified active lod. Transforms between mesh and group must match.

	Entity worlds can now be serialized and deserialized to/from a binary format using SerializeUtility

	Use SerializeUtilityHybrid to support shared components

Changes

	EntityDebugger’s display of ComponentGroups is improved:

	They will now wrap to multiple lines if there isn’t enough space

	Generic types are displayed nicely

	Sort order is stable

0.0.6

New Features

	OnStartRunning() and OnStopRunning() added to ComponentSystem and JobComponentSystem

	OnStartRunning is called when a system’s Enabled or ShouldStartRunning() becomes true

	OnStopRunning is called when a system’s Enabled or ShouldStartRunning() becomes false. Also when the system will get destroyed.

	It will only send one of each in succession

	Example: Two OnStartRunning() cannot be triggered for a given system without an OnStopRunning() call in between

	Experimental SOA containers updated, now split into two different types:

	NativeArrayFullSOA internally lays everything out in sub-arrays

	NativeArrayChunked8 internally lays data out in chunks of 32 bytes

	Component type versions in Chunks (for broadphase change tracking)

	Query Archetype and Chunk iteration (query archetypes matching all/any/none component filter, and e.g. allow component existence checks on chunk level.)

	Add SystemStateComponentData (answer to Reactive system for add/delete components)

	IComponentSystemPatch to auto run ComponentSystem[Job] after every ComponentSystem.

Changes

	Make it possible to create EntityArray in addition to ComponentDataArray with the new ForEachFilter

0.0.5

New Features

	New API for faster filtering when going through all unique shared component values.

	var filter = group.CreateForEachFilter(uniqueTypes);

	var array = group.GetComponentDataArray(filter, i); // in a loop

 Capsicum manual

 [image: Unity]

Capsicum manual

This manual covers the three main aspects of Unity Capsicum: Entity-Component-System (ECS), C# Job System, and Burst.

Table of contents

	Entity-Component-System overview

	C# Job System overview

	Burst overview

	Tutorials

	Examples

	Community

	Further information, including:

	Capsicum cheat sheet

	Capsicum reference

Entity-Component-System overview

	ECS principles

	Is ECS for you?

	ECS concepts

	ECS features in detail

C# Job System overview

	How the job system works

	Low-level overview - creating containers & custom job types

	Scheduling a job from a job - why not?

Burst overview

	How to optimize for the Burst compiler

Tutorials

	Tutorial walk through: A two-stick shooter in ECS

Examples

	RotationExample.unity: Loop to change component if Entity position is inside a moving sphere.

Community

	Performance by Default [http://unity3d.com/performance-by-default]

Further information

	Capsicum cheat sheet

	Capsicum reference

	Capsicum status

	Capsicum resources

 How to optimize for the Burst compiler

How to optimize for the Burst compiler

	Use Unity.Mathematics, Burst natively understands the math operations and is optimized for it.

	Avoid branches. Use math.min, math.max, math.select instead.

	For jobs that have to be highly optimized, ensure that each job uses every single variable in the IComponentData. If some variables in an IComponentData is not being used, move it to a separate component. That way the unused data will not be loaded into cache lines when iterating over Entities.

 Capsicum cheat sheet

Capsicum cheat sheet

Here is a quick reference of the most useful classes, interfaces, structs, and attributes that have been introduced in this documentation by ECS, the C# Job System, and the Burst compiler.

Note: This is not an exhaustive list and can be added to over time as Capsicum, and its related documentation, expands. Check the repository code [https://github.com/Unity-Technologies/EntityComponentSystemSamples] and the Scripting API [https://docs.unity3d.com/ScriptReference/] under the namespaces mentioned below for more examples. Be aware that links can break as the code evolves, so if you notice a problem let us know in the forums [http://www.unity3d.com/performance-by-default] or as an issue [https://github.com/Unity-Technologies/EntityComponentSystemSamples/issues/new] in the repository.

ECS related

Namespace	Name	Type
:————-:	:————-:	:—–:
Unity.Collections	NativeHashMap	Unsafe Struct
Unity.Collections	NativeList	Unsafe Struct
Unity.Collections	NativeQueue	Unsafe Struct
Unity.Entities	Chunk	Unsafe Struct
Unity.Entities	ComponentDataArray	Unsafe Struct
Unity.Entities	ComponentDataFromEntity	Unsafe Struct
Unity.Entities	ComponentGroup	Unsafe Class
Unity.Entities	ComponentSystem	Abstract Class
Unity.Entities	ComponentType	Struct
Unity.Entities	DynamicBuffer	Unsafe Struct
Unity.Entities	Entity	Struct
Unity.Entities	EntityArchetype	Unsafe Struct
Unity.Entities	EntityCommandBuffer	Unsafe Struct
Unity.Entities	EntityManager	Unsafe Class
Unity.Entities	ExclusiveEntityTransaction	Unsafe Struct
Unity.Entities	GameObjectEntity	Class
Unity.Entities	IComponentData	Interface
Unity.Entities	IJobProcessComponentData	Interface
Unity.Entities	ISharedComponentData	Interface
Unity.Entities	JobComponentSystem	Abstract Class
Unity.Entities	World	Class
Unity.Jobs	IJobParallelForBatch	Interface
Unity.Jobs	IJobParallelForFilter	Interface
Unity.Rendering	MeshInstanceRendererComponent	Class
Unity.Transforms	PositionComponent	Class
Unity.Transforms	CopyInitialTransformFromGameObjectComponent	Class
Unity.Transforms	TransformSystem	Class

Attributes

	[Inject]

Unsafe attributes

	[NativeContainer] [https://docs.unity3d.com/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeContainerAttribute.html]

	[NativeContainerIsAtomicWriteOnly] [https://docs.unity3d.com/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeContainerIsAtomicWriteOnlyAttribute.html]

	[NativeContainerSupportsMinMaxWriteRestriction] [https://docs.unity3d.com/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeContainerSupportsMinMaxWriteRestrictionAttribute.html]

	[NativeContainerSupportsDeallocateOnJobCompletion] [https://docs.unity3d.com/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeContainerSupportsDeallocateOnJobCompletionAttribute.html]

	[NativeDisableUnsafePtrRestriction] [https://docs.unity3d.com/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeDisableUnsafePtrRestrictionAttribute.html]

	[NativeSetClassTypeToNullOnSchedule] [https://docs.unity3d.com/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeSetClassTypeToNullOnScheduleAttribute.html]

Other

	#if ENABLE_UNITY_COLLECTIONS_CHECKS … #endif

C# Job System related

Note: ECS code can also use the following objects, but they are part of the Unity codebase since 2018.1 and not part of any related packages. For more information, see the C# Job System manual [https://docs.unity3d.com/Manual/JobSystem.html].

Namespace	Name	Type
:————-:	:————-:	:—–:
Unity.Collections	NativeArray [https://docs.unity3d.com/ScriptReference/Unity.Collections.NativeArray_1.html]	Struct
Unity.Collections	NativeContainer [https://docs.unity3d.com/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeContainerAttribute.html]	Unsafe Class
Unity.Collections	NativeSlice [https://docs.unity3d.com/ScriptReference/Unity.Collections.NativeSlice_1.html]	Struct
Unity.Jobs	IJob [https://docs.unity3d.com/ScriptReference/Unity.Jobs.IJob.html]	Interface
Unity.Jobs	IJobParallelFor [https://docs.unity3d.com/ScriptReference/Unity.Jobs.IJobParallelFor.html]	Interface
Unity.Jobs	JobHandle [https://docs.unity3d.com/ScriptReference/Unity.Jobs.JobHandle.html]	Interface
Unity.Jobs	JobsUtility [https://docs.unity3d.com/ScriptReference/Unity.Jobs.LowLevel.Unsafe.JobsUtility.html]	Unsafe Class

Attributes

	[ReadOnly] [https://docs.unity3d.com/ScriptReference/Unity.Collections.ReadOnlyAttribute.html]

	[WriteOnly] [https://docs.unity3d.com/ScriptReference/Unity.Collections.WriteOnlyAttribute.html]

Burst compiler related

Attributes

	[BurstDiscard] [https://docs.unity3d.com/ScriptReference/Unity.Burst.BurstDiscardAttribute.html]

	[BurstCompile]

 ECS concepts

ECS concepts

If you are familiar with Entity-component-system [https://en.wikipedia.org/wiki/Entity%E2%80%93component%E2%80%93system] (ECS) concepts, you might see the potential for naming conflicts with Unity’s existing GameObject/Component setup.

The purpose of this page is:

	Clarify and disambiguate the concepts as used in the ECS.

	Provide a brief introduction to each concept as an entry point to a new user.

EntityManager

Manages memory and structural changes.

ComponentData

Parallel streams of concrete, blittable [https://docs.microsoft.com/en-us/dotnet/framework/interop/blittable-and-non-blittable-types] data.

e.g.

Position	HitPoints
———-	———–
64,30	69
58,55	70
95,81	81
10,50	19
36,24	38
67,33	40

See: IComponentData in detail

Entity

An ID which can be used for indirect component lookups for the purposes of graph traversal.

e.g.

Entity	Position	HitPoints
—	———-	———–
0	64,30	69
1	58,55	70
2	95,81	81
3	10,50	19
4	36,24	38
5	67,33	40

See: Entity in detail

SharedComponentData

Type of ComponentData where each unique value is only stored once. ComponentData streams are divided into subsets by each value of all SharedComponentData.

e.g. (Mesh SharedComponentData)

Mesh = RocketShip

Position	HitPoints
———-	———–
64,30	69
58,55	70
95,81	81

Mesh = Bullet

Position	HitPoints
———-	———–
10,50	19
36,24	38
67,33	40

See: SharedComponentData in detail

Dynamic Buffers

This is a type of component data that allows a variable-sized, “stretchy”
buffer to be associated with an entity. Behaves as a component type that
carries an internal capacity of a certain number of elements, but can allocate
a heap memory block if the internal capacity is exhausted.

See: Dynamic Buffers

EntityArchetype

Specific set of ComponentData types and SharedComponentData values which define the subsets of ComponentData streams stored in the EntityManager.

e.g. In the above, there are two EntityArchetypes:

	Position, HitPoints, Mesh = RocketShip

	Position, HitPoints, Mesh = Bullet

See: EntityArchetype in detail

ComponentSystem

Where gameplay/system logic/behavior occurs.

See: ComponentSystem in detail

World

A unique EntityManager with specific instances of defined ComponentSystems. Multiple Worlds may exist and work on independent data sets.

See: World in detail

SystemStateComponentData

A specific type of ComponentData which is not serialized or removed by default when an Entity ID is deleted. Used for internal state and resource management inside a system. Allows you to manage construction and destruction of resources.

See: SystemStateComponentData in detail

JobComponentSystem

A type of ComponentSystem where jobs are queued independently of the JobComponentSystem’s update, in the background. Those jobs are guaranteed to be completed in the same order as the systems.

See: JobComponentSystem in detail

EntityCommandBuffer

A list of structural changes to the data in an EntityManager for later completion. Structural changes are:

	Adding Component

	Removing Component

	Changing SharedComponent value

See: EntityCommandBuffer in detail

Barrier

A type of ComponentSystem, which provides an EntityCommandBuffer. i.e. A specific (synchronization) point in the frame where that EntityCommandBuffer will be resolved.

See: Barrier in detail

 ECS features in detail

ECS features in detail

Note: The main content of this page has migrated to the Capsicum reference. ECS related features are listed below in alphabetical order, with a short description and links to further information about it. This page is not an exhaustive list and can be added to over time as ECS, and its related documentation expands. If you spot something that is out-of-date or broken links, then make sure to let us know in the forums [http://unity3d.com/performance-by-default] or as an issue [https://github.com/Unity-Technologies/EntityComponentSystemSamples/issues/new] in the repository.

Barrier

When using jobs, you must request command buffers from a barrier on the main thread, and pass them to the jobs. When the BarrierSystem updates, the command buffers playback on the main thread in the order they were created. This extra step is required so that memory management can be centralized and determinism of the generated entities and components can be guaranteed.

For more information, see the EntityCommandBuffer reference page - see “Barrier.”

Chunk

A Chunk contains the ComponentData for each Entity. All entities in one Chunk follow the same memory layout. When iterating over components, memory access of components within a Chunk is always completely linear, with no waste loaded into cache lines. This is a hard guarantee.

For more information, see the Chunk reference page.

ComponentDataFromEntity

If you need to access ComponentData on another Entity, the only stable way of referencing that component data is via the Entity ID. EntityManager provides a simple get & set ComponentData API for it. However, you can’t use the EntityManager in a C# job. ComponentDataFromEntity gives you a simple API that you can also safely use in a job.

For more information, see the ComponentDataFromEntity reference page.

ComponentGroup

The ComponentGroup is the foundation class on top of which all iteration methods are built (Injection, foreach, IJobProcessComponentData, etc.). Essentially a ComponentGroup is constructed with a set of required components and or subtractive components. ComponentGroup lets you extract individual arrays of entities based on their components.

For more information, see the ComponentGroup reference page.

Entity

An Entity is an ID. You can think of it as a super lightweight GameObject [https://docs.unity3d.com/Manual/GameObjects.html] that does not even have a name by default.

You can add and remove components from entities at runtime. Entity ID’s are stable. They are the only stable way to store a reference to another component or Entity.

For more information, see the Entity reference page.

EntityArchetype

An EntityArchetype is a unique array of ComponentType structs. The EntityManager uses EntityArchetypestructs to group all entities using the same ComponentType structs into Chunks.

For more information, see the EntityArchetype reference page.

EntityCommandBuffer

The EntityCommandBuffer abstraction allows you to queue up changes (from either a job or from the main thread) so that they can take effect later on the main thread.

For more information, see the EntityCommandBuffer reference page.

EntityManager

EntityManager is where you find APIs to create entities, check if an Entity is still alive, instantiate entities and add or remove components.

For more information, see the EntityManager reference page.

ExclusiveEntityTransaction

ExclusiveEntityTransaction is an API to create & destroy entities from a job. The purpose is to enable procedural generation scenarios where instantiation on a big scale must happen in jobs. As the name implies, it is exclusive to any other access to the EntityManager.

For more information, see the ExclusiveEntityTransaction reference page.

GameObjectEntity

ECS ships with the GameObjectEntity component. It is a MonoBehaviour. In OnEnable, the GameObjectEntity component creates an Entity with all components on the GameObject. As a result, the full GameObject and all its components are now iterable by ComponentSystem classes.

For more information, see the GameObjectEntity reference page.

IComponentData

IComponentData is a pure ECS-style component, meaning that it defines no behavior, only data. IComponentData is a struct rather than a class, meaning that it is copied by value instead of by reference [https://stackoverflow.com/questions/373419/whats-the-difference-between-passing-by-reference-vs-passing-by-value?answertab=votes#tab-top] by default.

For more information, see the ComponentData reference page - see “IComponentData.”

Injection

Injection allows your system to declare its dependencies, while those dependencies are then automatically injected into the injected variables before OnCreateManager, OnDestroyManager, and OnUpdate.

For more information, see the Injection reference page.

JobComponentSystem (Automatic job dependency management)

Managing dependencies is hard, which is why the JobComponentSystem does it automatically for you. The rules are simple: jobs from different systems can read from IComponentData of the same type in parallel. If one of the jobs is writing to the data, then they can’t run in parallel and will be scheduled with a dependency between the jobs.

For more information, see the JobComponentSystem reference page.

Shared ComponentData

ISharedComponentData is useful when many entities have something in common, for example in the Boid demo we instantiate many entities from the same Prefab [https://docs.unity3d.com/Manual/Prefabs.html], and thus the MeshInstanceRenderer between many Boid entities is the same.

For more information, see the SharedComponentData reference page.

SystemStateComponentData

The purpose of SystemStateComponentData is to allow you to track resources internal to a system and have the opportunity to appropriately create and destroy those resources as needed without relying on individual callbacks.

For more information, see the SystemStateComponent reference page.

System update order

In ECS all systems are updated on the main thread. Systems update based on a set of constraints and an optimization pass, which tries to order the systems in a way so that the time between scheduling a job and waiting for it is as long as possible.

For more information, see the System update order reference page.

World

A World owns both an EntityManager and a set of ComponentSystems. You can create as many World objects as you like. Commonly you would create a simulation World and rendering or presentation World.

For more information, see the World reference page.

Further information

For more information on ECS features, see the Capsicum reference section.

 Entity Component System principles and vision

Entity Component System principles and vision

The Entity Component System is built on a set of principles. These principles provide a good context for what we are trying to achieve. Some of the principles are clearly reflected in the code. Others are simply goals that we set for ourselves.

Performance by default

We want to make it simple to create efficient machine code for all platforms.

We measure ourselves against the performance that can be achieved in C++ with handwritten highly optimized simd [https://en.wikipedia.org/wiki/SIMD] intrinsics.

We are using a combination of compiler technology (Burst), containers (Unity.Collections), data layout of components (ECS) to make it easy to write efficient code by default.

	Data layout & iteration - The Entity Component System gurantees linear data layout when iterating entities in chunks by default. This is a critical part of the performance gains provided by the Entity Component System.

	The C# job system lets you write multithreaded code in a simple way. It is also safe. The C# Job Debugger detects any race conditions.

	Burst is our compiler specifically for C# jobs. C# job code follows certain patterns that we can use to produce more efficient machine code. Code is compiled & optimized for each target platforms taking advantage of SIMD instructions.

An example of this is the performance of Instantiation. Comparing to the theoretical limit, of instantiating 100.000 entities with 320 bytes of a memcpy takes 9ms. Instantiating those entities via the Entity Component System takes 10ms. So we are very close to the theoretical lmit.

At Unite Austin we showcased a demo with 100.000 individual units in a massive battle simulation running at 60 FPS. All game code was running multicore.
See ECS performance demo [Video] [https://www.youtube.com/watch?v=0969LalB7vw]

Simple

Writing performant [https://en.wiktionary.org/wiki/performant] code must be simple. We believe that we can make writing fast code as simple as MonoBehaviour.Update.

Note: To set expectations right, we think we still have some ways to go to achieve this goal.

One way of writing code

We want to define a single way of writing game code, editor code, asset pipeline code, engine code. We believe this creates a simpler tool for our users, and more ability to change things around.

Physics is a great example. Currently Physics is a black box solution. In practice many developers want to tweak the simulation code to fit it to their games needs. If physics engine code was written the same way as game code using ECS, it would make it easy to plug your own simulation code between existing physics simulation stages or take full control.

Another example, lets imagine you want to make a heavily moddable game.

If our import pipeline is implemented as a set of ComponentSystems. And we have some FBX import pipeline code that is by default used in the asset pipeline to import and postprocess an FBX file. (Mesh is baked out and FBX import code used in the editor.)

Then it would be easy to configure the Package Manager that the same FBX import and postprocessing code could be used in a deployed game for the purposes of modding.

We believe this will, at the foundation level, make Unity significantly more flexible than it is today.

Networking

We want to define one simple way of writing all game code. When following this approach, your game can use one of three network architectures depending on what type of game you create.

We are focused on providing best of class network engine support for hosted games. Using the recently acquired Multiplay.com [http://Multiplay.com] service we offer a simple pipeline to host said games.

	FPS - Simulation on the server

	RTS - Deterministic lock step simulation

	Arcade games - GGPO

Note: To set expectations right, we are not yet shipping any networking code on top of Entity Component System. It is work in progress.

Determinism

Our build pipeline must be deterministic [https://en.wikipedia.org/wiki/Deterministic_algorithm]. Users can choose if all simulation code should run deterministically.

You should always get the same results with the same inputs, no matter what device is being used. This is important for networking, replay features and even advanced debugging tools.

To do this we will leverage our Burst compiler to produce exact floating point math between different platforms. Imagine a linux server & iOS device running the same floating point math code. This is useful for many scenarios particularly for connected games, but also debugging, replay etc.

Note: Floating point math discrepancies is a problem that Unity decided to tackle head on. This issue has been known about for some time, but so far there has not been a need great enough to encourage people to solve it. For some insight into this problem, including some of the workarounds needed to avoid solving it, consider reading Floating-Point Determinism by Bruce Dawson [https://randomascii.wordpress.com/2013/07/16/floating-point-determinism/].

Sandbox

Unity is a sandbox, safe and simple.

We provide great error messages when API’s are used incorrectly, we never put ourselves in a position where incorrect usage results in a crash and that is by design (as opposed to a bug we can quickly fix).

A good example of sandbox behaviour is that our C# job system guarantees that none of your C# job code has race conditions. We deterministically check all possible race conditions through a combination of static code analysis & runtime checks. We give you well written error messages about any race conditions right away. So you can trust that your code works and feel safe that even developers who write multithreaded game code for the first time will do it right.

Tiny

We want Unity to be usable for all content from < 50kb executables + content, to gigabyte sized games. We want Unity to load in less than 1 second for small content.

Iteration time

We aim to keep iteration time for any common operations in a large project folder below 500ms.

As an example we are working on rewriting the C# compiler to be fully incremental with the goal of:

When changing a single .cs file in a large project. The combined compile and hot reload time should be less than 500ms.

Our code comes with full unit test coverage

We believe in shipping robust code from the start. We use unit tests to prove that our code works correctly when it is written and committed by the developer. Tests are shipped as part of the packages.

Evolution

We are aware that we are proposing a rather large change in how to write code. From MonoBehaviour.Update to ComponentSystem & using jobs.

We believe that ultimately the only thing that convinces a game developer is trying it and seeing the result with your own eyes, on your own game.

Thus it is important that applying the ECS approach on an existing project should be easy and quick to do. Our goal is that within 30 minutes a user can, in a large project, change some code from MonoBehaviour.Update to ComponentSystem and have a successful experience optimizing his game code.

Packages

We want the majority of our engine code to be written in C# and deployed in a Package. All source code is available to all Unity Pro customers.

We want a rapid feedback loop with customers, given that we can push code and get feedback on something quickly in a package without destabilizing other parts.

Previously most of our engine code was written in C++, which creates a disconnect with how our customers write code and how programmers at Unity write code. Due to the Burst compiler tech & ECS, we can achieve better than C++ with C# code and as a result we can all write code exactly the same way.

Collaboration

We believe Unity users and Unity developers are all on the same team. Our purpose is to help all Unity users create the best game experiences faster, in higher quality, and with great performance.

We believe every feature we develop must be developed with real scenarios and real production feedback early on. The Package Manager facilitates that.

For those in the community that want to contribute engine code, we aim to make that easy by working directly on the same code repositories that contributors can commit to as well. Through well defined principles and full test coverage of all features, we hope to keep the quality of contributions high as well.

The source code repositories will be available for all Unity Pro Customers.

Transparency

We believe in transparency. We develop our features in the open, we actively communicate on both forum and blogs. We reserve time so each developer can spend time with customers and understand our users pain points.

 Is the Entity Component System for you?

Is the Entity Component System for you?

The Entity Component System is in preview. It is not recommended for production.

At the moment there are two good reasons to use it.

You want to experiment

This is exciting new technology and the promise of massive performance boosts is seducing. Try it out. Give us your feedback. We would love to talk to you on the forums.

You are trying to build a game that simply can’t be done without the Entity Component system

We’d love to know more about your game. Please do feel free to post on the forum about your game what you are trying to achieve and what you think the Entity Component System gives you that can’t be achieved otherwise.

Trying the Entity Component System

You’ve heard that ECS not only improves performance, but helps you write cleaner, clearer, and more maintainable code. You’d like to see how it works for you in practice.
This is a fun scenario, because you get to write straightforward code from the beginning. There are a few things to keep in mind:

You will probably want to use hybrid ECS at first

Right now, most of Unity’s existing systems are still only designed to be used with GameObjects. This means that making a “pure” ECS game requires that you write a lot of what you need yourself. To get started, it is often useful to have Unity’s built-in physics, audio and rendering systems. To do this, you will need GameObjects with Colliders, Rigidbody components, and (crucially) GameObjectEntity scripts.
The important thing to remember is that this is totally fine, and Unity ECS was designed to work with traditional GameObject/component setups, as well as lightweight Entity/ComponentData ones. You won’t be able to use the job system with traditional GameObject stuff, but you’ll probably find there are lots of places where you are using just Entities anyway.

 Capsicum resources

Capsicum resources

Below are some Capsicum resources, either by Unity or external sources that we have verified. We will include external sources that we feel display a good understanding of Capsicum and contain high-quality information (at the time of contribution).

Note: Due to the changing nature of Capsicum, links can become obsolete. The page will be checked to make sure it contains the best resources, but if you spot something that is out-of-date or broken links, then make sure to let us know in the forums [http://unity3d.com/performance-by-default] or as an issue [https://github.com/Unity-Technologies/EntityComponentSystemSamples/issues/new] in the repository.

Tutorials

	Intro To The Entity Component System And C# Job System by Mike Geig [https://www.youtube.com/watch?v=WLfhUKp2gag&list=PLX2vGYjWbI0S4yHZwjDI1boIrYStpBCdN] (Five part video tutorial series.)

Event resources

[image: Unity at GDC 2018]

Unity at GDC 2018

	Keynote: The future of Unity (Entity Component System & Performance) by Joachim Ante [https://www.youtube.com/watch?v=3Mq9EH8RT_U]

	Evolving Unity by Joachim Ante [FULL VIDEO] [https://www.youtube.com/watch?v=aFFLEiDr3T0]

	Unity Job System and Entity Component System by Tim Johansson [FULL VIDEO] [https://www.youtube.com/watch?v=kwnb9Clh2Is]

	Democratizing Data-Oriented Design: A Data-Oriented Approach to Using Component Systems by Mike Acton [FULL VIDEO] [https://www.youtube.com/watch?v=p65Yt20pw0g]

	C# Sharp to Machine Code by Andreas Fredriksson [FULL VIDEO] [https://www.youtube.com/watch?v=NF6kcNS6U80]

	ECS for Small Things by Vladimir Vukicevic [FULL VIDEO] [https://www.youtube.com/watch?v=EWVU6cFdmr0]

	Exclusive: Unity takes a principled step into triple-A performance at GDC [https://www.mcvuk.com/development/exclusive-unity-takes-a-principled-step-into-triple-a-performance-at-gdc]

​

[image: Unity at Unite Austin 2017]

Unity at Unite Austin 2017

	Keynote: Performance demo ft. Nordeus by Joachim Ante [http://www.youtube.com/watch?v=0969LalB7vw]

	Unity GitHub repository of Nordeus demo [https://github.com/Unity-Technologies/UniteAustinTechnicalPresentation]

	Writing high performance C# scripts by Joachim Ante [FULL VIDEO] [http://www.youtube.com/watch?v=tGmnZdY5Y-E]

 RotationExample.unity

RotationExample.unity

[image:]

Basic description

In this example you will find:

	Cubes are spawned randomly in a circle.

	A sphere moves around that circle.

	When the sphere intersects a cube, the cube rotates at a fixed rate about the y-axis.

	When the sphere stops intersecting a cube, the cube’s rotation decays at a fixed rate.

What this example demonstrates

This examples shows you:

	Spawning pure ECS Entities/components (not GameObjects)

	Updating positions

	Initializing positions from GameObject transform

	Updating rotations

	Rendering instanced models based on a generated matrix

	Simple example of updating ComponentData based on a moving sphere

Spawn cubes in a circle

[image:]

Select Create Empty GameObject in the Scene and name it “RotatingCubeSpawner”.

[image:]

Add these components to RotatingCubeSpawner:

	UnityEngine.ECS.SpawnerShim/SpawnRandomCircleComponent

	Unity.Transforms/PositionComponent

	Unity.Transforms/CopyInitialTransformFromGameObjectComponent

Set the properties of SpawnRandomCircleComponent to:

	Prefab: Assets/SampleAssets/TestRotatingCube.prefab
This is a prefab container which contains the components for the each Entity that will be spawned.

	Radius: 25.
Spawn entities 25m from the center of the circle.

	Count: 100.
Spawn 100 entities.

The PositionComponent specifies that the entity that is created from the RotatingCubeSpawner GameObject has a position in the ECS. That position is used as the center of the circle for spawning. (Required)

The CopyInitialTransformFromGameObjectComponent specifies that only the initial value for PositionComponent in ECS will be copied from the GameObject’s Transform.

Move sphere about same circle and reset rotations when intersecting cubes

[image:]

Select Create Empty GameObject in the scene and name it “TestResetRotationSphere”.

[image:]

Add these components to TestResetRotationSphere:

	Unity.Transforms/PositionComponent

	Unity.Transforms/CopyInitialTransformFromGameObjectComponent

	Unity.Transforms/TransformMatrixComponent

	Unity.Rendering/MeshInstanceRendererComponent

	UnityEngine.ECS.SimpleMovement/MoveSpeedComponent

	UnityEngine.ECS.SimpleMovement/MoveAlongCircleComponent

	UnityEngine.ECS.SimpleRotation/RotationSpeedResetSphereComponent

Like the RotatingCubeSpawner, the PositionComponent specifies that the Entity that is created from the TestResetRotationSphere GameObject has a position in ECS and the CopyInitialTransformFromGameObjectComponent specifies that only the initial value for PositionComponent in ECS will be copied from the GameObject’s Transform.

The TransformMatrixComponent specifies that a 4x4 matrix should be stored. That matrix is updated automatically based on changes to the PositionComponent.

Set the properties of the MeshInstanceRendererComponent:

	Mesh: Sphere

	Material: InstanceMat

Assign a Material that has GPU Instancing enabled.

This component specifies that this Mesh/Material combination should be rendered with the corresponding TransformMatrix (required).

Set the properties of the MoveSpeedComponent:

	Speed: 1

This component requests that if another component is moving the PositionComponent it should respect this value and move the position at the constant speed specified.

Set the properties of the MoveAlongCircleComponent:

	Center: 0,0,0

	Radius: 25

The center and radius correspond to the circle of Entities that is being spawned by RotatingCubeSpawner.

This component will update the corresponding PositionComponent at the rate specified by MoveSpeedComponent in radians per second.

Set the properties of the RotationSpeedResetSphereComponent:

	Speed: 4 (radians per second)

	Radius: 2 (meters)

This component specifies that if any other PositionComponent is within the sphere defined by the PositionComponent on this Entity and the radius, the TransformRotationComponent on that Entity should be set to speed, if it exists.

 Scheduling a job from a job - why not?

Scheduling a job from a job - why not?

We have a couple of important principles that drive our design.

	Determinism by default: Determinism enables networked games, replay and debugging tools.

	Safe: Race conditions are immediately reported, this makes writing jobified code significantly more approachable and simple.

These two principles applied result in some choices and restrictions that we enforce.

Jobs can only be completed on the main thread - but why?

If you were to call JobHandle.Complete that leads to impossible to solve job scheduler deadlocks.
(We have tried this over the last couple years with the Unity C++ code base, and every single case has resulted in tears and us reverting such patterns in our code.) The deadlocks are rare but provably impossible to solve in all cases, they are heavily dependent on the timing of jobs.

Jobs can only be scheduled on the main thread - but why?

If you were to simply schedule a job from another job, but not call JobHandle.Complete from the job, then there is no way to guarantee determinism. The main thread has to call JobHandle.Complete(), but who passes that JobHandle to the main thread? How do you know the job that schedules the other job has already executed?

In summary, first instinct is to simply schedule jobs from other jobs, and then wait for jobs within a job.
Yet experience tells us that this is always a bad idea. So the C# job system does not support it.

OK, but how do I process workloads where I don’t know the exact size upfront?

It’s totally fine to schedule jobs conservatively and then simply exit early and do nothing if it turns out the number of actual elements to process, when the job executes, is much less than the conservative number of elements that was determined at schedule time.

In fact this way of doing it leads to deterministic execution, and if the early exit can skip a whole batch of operations it’s not really a performance issue.
Also, there is no possibility of causing internal job scheduler deadlocks.

For this purpose using IJobParallelForBatch as opposed to IJobParallelFor can be very useful since you can exit early on a whole batch.

 public interface IJobParallelForBatch
 {
 void Execute(int startIndex, int count);
 }

TODO: CODE EXAMPLE for sorting?

 Status of Capsicum

Status of Capsicum

Entity iteration

	We have implemented various approaches (foreach vs arrays, injection vs API). Right now we expose all possible ways of doing it, so that users can give us feedback on which one they like by actually trying them. Later on we will decide on the best way and delete all others.

Job API using ECS

	We believe we can make it significantly simpler. The next thing to try out is Async / Await and see if there are some nice patterns that are both fast & simple.

Entities vs. GameObjects

Our goal is to be able to make entities editable just like GameObjects are. Scenes are either full of Entities or full of GameObjects. Right now we have no tooling for editing Entities without GameObjects. So in the future we want to:

	Display & edit Entities in Hierarchy window and Inspector window.

	Save Scene / Open Scene / Prefabs for Entities.

 Two-stick shooter ECS tutorial

Two-stick shooter ECS tutorial

In this series of posts, we’re going to make a simple game using Unity ECS and jobs as much as possible.
The game type we picked for this was a simple two-stick shooter, something everyone can imagine building in a traditional way pretty easily.

Scene setup

For this tutorial, we’re going to use ECS as much as possible.
The scene we need for this tutorial is almost empty as there are very few
GameObjects involved. The only things we use the Scene for are:

	A camera

	A light source

	Template objects that hold parameters we’ll use to spawn ECS Entities

	A couple of UI objects to start the game and display health

The tutorial project is located in Assets/ECS/TwoStickShooterPure.

Bootstrapping

How do you bootstrap your game when using ECS? After all, you need something to insert
those initial Entities into the system before anything can update.

One simple answer is to just run some code when the project starts playing. In this project,
there’s a class TwoStickBootsrap that comes with two methods. The first method initializes
early and creates the core EntityManager we’re going to use to interact with ECS.

Overall, here’s what the bootstrapping code achieves:

	It creates an EntityManager; a key ECS abstraction we use to create and modify
Entities and their components.

	It creates archetypes, which you can think of as blueprints for what components
will be attached to an Entity later on when it is created. This step is optional,
but avoids reallocating memory and moving objects later when they are spawned, because
they will be created with the correct memory layout right away.

	It pulls out some prototypes and settings from the Scene.

Scene data

Pure ECS data isn’t supported to a great degree in the editor yet, so we’ll take two
approaches in the interim to configure our game:

	For things like asset references, we’ll create a couple of prototype GameObjects
in the Scene, where we can add wrapped IComponentData types. This is the approach
we’ve taken to customize the appearance of the hero and the shots. Once we’ve finished
the configuration, we can discard these prototype objects.

	For “bags of settings”, it’s convenient to retain a traditional Unity component on an
empty GameObject, because that allows you to tweak the values in Play Mode. The
example project uses a component TwoStickExampleSettings for this purpose that we
put on an empty GameObject called Settings. This allows us to fetch the component
and keep it around globally in our application, as well as to receive updates when values are
changed.

Archetypes

As this is a very small game, we can describe all the EntityArchetypes we need directly
in the bootstrap code. To make an archetype, you simply list all the ComponentTypes that
you need to go on an instance of that archetype when it is created.

Let’s look at one archetype, PlayerArchetype, which is for creating, well, players:

PlayerArchetype = entityManager.CreateArchetype(
 typeof(Position2D), typeof(Heading2D), typeof(PlayerInput),
 typeof(Faction), typeof(Health), typeof(TransformMatrix));

The PlayerArchetype has the following ComponentTypes:

	Position2D and Heading2D - These stock ECS components allow the player’s avatar to be
positioned and automatically rendered using built-in 2D->3D transformations.

	PlayerInput is a component we fill in every frame based on the player’s Input [https://docs.unity3d.com/ScriptReference/Input.html]

	Faction describes the “team” the player is on. It’ll come in useful later when we need
to have shots just hit the opposing team.

	Health simply contains a hit point counter.

	Finally, I’ve added another stock component TransformMatrix that is required as a
storage endpoint for 4x4 matrices [https://docs.unity3d.com/ScriptReference/Matrix4x4.html]
read by the InstanceRenderer system that works with ECS.

You can think of the ECS player-controlled Entity as a combination of these components.

The other archetypes are set up similarly.

The next initialization method runs after the Scene has loaded, because it needs to access a blueprint object from the Scene:

Extracting configuration from the Scene

Once the Scene has been loaded, our InitializeWithScene method is going to be called. Here,
we pull out a few objects from the Scene, including a Settings object we can use to change
the ECS code while it’s running.

Starting a new game

To start a game, we have to put a player Entity into the World. This is accomplished with this code:

public static void NewGame()
{
 // Access the ECS EntityManager
 var entityManager = World.Active.GetOrCreateManager<EntityManager>();

 // Create an Entity based on the PlayerArchetype. It will get
 // default values for all the ComponentTypes we listed.
 Entity player = entityManager.CreateEntity(PlayerArchetype);

 // We can change a few components so it makes more sense like this:
 entityManager.SetComponentData(player, new Position2D { Value = new float2(0.0f, 0.0f) });
 entityManager.SetComponentData(player, new Heading2D { Value = new float2(0.0f, 1.0f) });
 entityManager.SetComponentData(player, new Faction { Value = Faction.Player });
 entityManager.SetComponentData(player, new Health { Value = Settings.playerInitialHealth });

 // Finally we add a SharedComponentData that dictates the rendered look
 entityManager.AddSharedComponentData(player, PlayerLook);
}

Systems!

We need a few data transformations to happen to render a frame:

	We sample player Input (PlayerInputSystem).

	We move the player and allow them to shoot (PlayerMoveSystem).

	We need to sometimes spawn new enemies (EnemySpawnSystem).

	The enemies need to move (EnemyMoveSystem).

	The enemies need to shoot (EnemyShootSystem).

	We need to spawn new shots based on player or enemy action (ShotSpawnSystem).

	We need a way to clean up old shots when they timeout (ShotDestroySystem).

	We need to deal damage from shots (ShotDamageSystem).

	We need to cull any Entities that have no health left (RemoveDeadSystem).

	We need to push some data to the UI objects (UpdatePlayerHUD).

Player input, movement, and shooting

It’s worth calling out that multiplayer concerns are front and center in the ECS style
of writing code: we always have an array of players.

PlayerInputSystem is responsible for fetching input from the regular Unity Input API and
inserting that data into a PlayerInput component. It also counts down the fire cooldown,
that is, the waiting period before the player can fire again.

PlayerMoveSystem handles basic movement and shooting based on the input from the PlayerInputSystem.
It is relatively straight forward, except for how it creates a shot when the
player has fired. Rather than spawning a shot directly, it creates a ShotSpawnData
component that instructs a different system to do that work later. This separation
of concerns solves several problems:

	PlayerMoveSystem doesn’t need to know what components need to go on an Entity to make a
working shot.

	ShotSpawnSystem (which spawns shots from both enemies and players) doesn’t need
to know all the reasons shots get fired.

	We can spawn the shots into the world all at once at some later, well defined,
point in time.

This setup achieves something similar to a delayed event in a traditional component
architecture.

Enemy spawning, moving, and shooting

It would not be a challenging game without enemies shooting back at you, so naturally
there are a few systems dedicated to this.

Of the enemy systems, the most interesting one is the EnemySpawnSystem. It needs to keep
track of when to spawn an enemy, but we don’t want to put that state in the system itself.
One of the design principles of ECS is that it shouldn’t prevent you from recording
component state and playing it back later to reconstruct a Scene. Storing a bunch of
state variables that carry meaning from frame to frame will break that contract.

The EnemySpawnSystem instead stores its state in a singleton component, attached to a
singleton Entity. We create the Entity and the initial values for this component in
a setup function EnemySpawner.SetupComponentData(). Here we also initialize a random
seed and store that along with the rest of the data, so that games will predictably spawn
enemies in the same pattern every time, regardless of frame rate or if something fancy like
state replay is happening.

Inside the EnemySpawnSystem, due to ref return not being implemented yet, we have to take a copy
of our system’s state from the singular State array, and then when we’ve modified it for
the next frame, we store it back into the component.

This may look like a lot of boilerplate (and it is) but it’s also kind interesting to think
about this in a different way. What if we renamed State to “Wave” and updated more than one
of them at a time, orchestrated by some other system? We would get multiple simultaneous
“Waves” spawning and updating in concert. ECS makes these sort of transformations much easier
and cleaner than if we had used global data attached to the system.

One quirk is that we have to put off actually spawning an Entity until we’ve completed
the above step of storing back our component state, because touching the EntityManager will
immediately invalidate all injected arrays (including the one where our state is kept!). Our
solution to this is command buffers [https://docs.unity3d.com/ScriptReference/Rendering.CommandBuffer.html]
(via EntityCommandBuffer - but command buffers don’t
yet support ISharedComponentData, which is needed here to set the rendered look.)

Enemies move automatically using the stock MoveForward component, so that’s taken
care of.

We need them to shoot however, and EnemyShootSystem does just that. It creates
entities with ShotSpawnData data on them that will be converted to shots later; together
with any player shots.

Finally we also need a way to get rid of enemies that go offscreen. EnemyRemovalSystem
goes through all enemy positions and kills offscreen enemies by setting their health to -1.

Handling shots

ShotSpawnSystem deals with creating actual shots from the requests dropped into the ECS by
players and enemies. This is a simple straightforward affair that just loops over all
ShotSpawnData and converts them into shots.

More interesting is ShotDamageSystem, which intersects bullets and targets and deals
damage. This uses 4 injected groups:

	Players

	Shots fired by players

	Enemies

	Shots fired by enemies

This way it can kick off two jobs:

	Players vs enemy shots

	Enemies vs player shots

It uses a very simplistic point against circle collision test.

We also need to get rid of shots that didn’t hit anything and just fly off. When their time to
live goes to zero, we let ShotDestroySystem remove them.

Final pieces

We need something that culls dead objects from the world, and RemoveDeadSystem does just
that.

Finally, we want to display some data about the player’s health on the screen
and UpdatePlayerHUD accomplishes this task.

 AOT compilation

AOT compilation

General computing term. AOT stands for “Ahead-of-time”.

Wikipedia [https://en.wikipedia.org/wiki/Ahead-of-time_compilation]: “In computer science, ahead-of-time (AOT) compilation is the act of compiling a higher-level programming language such as C or C++, or an intermediate representation such as Java bytecode or .NET Framework Common Intermediate Language (CIL) code, into a native (system-dependent) machine code so that the resulting binary file can execute natively. AOT produces machine optimized code, just like a standard native compiler. The difference is that AOT transforms the bytecode of an extant virtual machine (VM) into machine code.”

See also: JIT compilation.

Back to Capsicum reference

 Atomic operation

Atomic operation

General computing term. Also known as linearizable or uninterruptible.

Wikipedia [https://en.wikipedia.org/wiki/Linearizability]: “In concurrent programming, an operation (or set of operations) is atomic, linearizable, indivisible or uninterruptible if it appears to the rest of the system to occur at once without being interrupted. Atomicity is a guarantee of isolation from interrupts, signals, concurrent processes and threads… Additionally, atomic operations commonly have a succeed-or-fail definition—they either successfully change the state of the system, or have no apparent effect.”

Preshing on Programming [http://preshing.com/20130618/atomic-vs-non-atomic-operations/]: “An operation acting on shared memory is atomic if it completes in a single step relative to other threads. When an atomic store is performed on a shared variable, no other thread can observe the modification half-complete. When an atomic load is performed on a shared variable, it reads the entire value as it appeared at a single moment in time… Any time two threads operate on a shared variable concurrently, and one of those operations performs a write, both threads must use atomic operations.”

Back to Capsicum reference

 Blittable types

Blittable types

General computing term.

Wikipedia [https://en.wikipedia.org/wiki/Blittable_types]: “Blittable types are data types in the Microsoft .NET framework that have an identical presentation in memory for both managed and unmanaged code… A memory copy operation is sometimes referred to as a ‘block transfer’. This term is sometimes abbreviated as BLT… and pronounced ‘blit’. The term ‘blittable’ expresses whether it is legal to copy an object using a block transfer.”

See also: managed code and unmanged code.

Back to Capsicum reference

 Burst compiler

Burst compiler

Burst is a new LLVM [https://en.wikipedia.org/wiki/LLVM] based backend compiler technology that makes things easier for you. It takes C# jobs and produces highly-optimized machine code taking advantage of the particular capabilities of your platform. So you get a lot of the benefits of hand tuned assembler code, across multiple platforms, without all the hard work. The Burst compiler can be used to increase performance of jobs written for the C# Job System [https://docs.unity3d.com/Manual/JobSystem.html].

Back to Capsicum reference

 Chunk Iteration

Chunk Iteration

Chunk implementation detail

The ComponentData for each Entity is stored in what we internally refer to as a chunk [https://en.wikipedia.org/wiki/Chunking_(computing)]. ComponentData is laid out by stream. Meaning all components of type A, are tightly packed in an array. Followed by all components of type B etc.

A chunk is always linked to a specific EntityArchetype. Thus all Entities in one chunk follow the exact same memory layout. When iterating over components, memory access of components within a chunk is always completely linear, with no waste loaded into cache lines. This is a hard guarantee.

ComponentDataArray is essentially a convenience index based iterator for a single component type;
First we iterate over all EntityArchetype structs compatible with the ComponentGroup; for each EntityArchetype iterating over all chunks compatible with it and for each chunk iterating over all entities in that chunk.

Once all entities of a chunk have been visited, we find the next matching chunk and iterate through those entities.

When entities are destroyed, we move up other entities into its place and then update the Entity table accordingly. This is required to make a hard guarantee on linear iteration of entities. The code moving the ComponentData into memory is highly optimized.

Motivation

If, for example, there are three components, being Position, Rotation, and Scale, and the output of any combination of these three components should write to a LocalToWorld component. The approach using component group injection might look something like:

struct PositionToLocalToWorld
{
 ComponentDataArray<Position> Position;
 SubtractiveComponent<Rotation> Rotation;
 SubtractiveComponent<Scale> Scale;
 ComponentDataArray<LocalToWorld> LocalToWorld;
}
[Inject] PositionToLocalToWorld positionToLocalToWorld;

struct PositionRotationToLocalToWorld
{
 ComponentDataArray<Position> Position;
 ComponentDataArray<Rotation> Rotation;
 SubtractiveComponent<Scale> Scale;
 ComponentDataArray<LocalToWorld> LocalToWorld;
}
[Inject] PositionRotationToLocalToWorld positionRotationToLocalToWorld;

struct PositionRotationScaleToLocalToWorld
{
 ComponentDataArray<Position> Position;
 ComponentDataArray<Rotation> Rotation;
 ComponentDataArray<Scale> Scale;
 ComponentDataArray<LocalToWorld> LocalToWorld;
}
[Inject] PositionRotationScaleToLocalToWorld positionRotationScaleToLocalToWorld;

struct PositionScaleToLocalToWorld
{
 ComponentDataArray<Position> Position;
 SubtractiveComponent<Rotation> Rotation;
 ComponentDataArray<Scale> Scale;
 ComponentDataArray<LocalToWorld> LocalToWorld;
}
[Inject] PositionScaleToLocalToWorld positionScaleToLocalToWorld;

struct RotationToLocalToWorld
{
 SubtractiveComponent<Position> Position;
 ComponentDataArray<Rotation> Rotation;
 SubtractiveComponent<Scale> Scale;
 ComponentDataArray<LocalToWorld> LocalToWorld;
}
[Inject] RotationToLocalToWorld rotationToLocalToWorld;

struct RotationScaleToLocalToWorld
{
 SubtractiveComponent<Position> Position;
 ComponentDataArray<Rotation> Rotation;
 ComponentDataArray<Scale> Scale;
 ComponentDataArray<LocalToWorld> LocalToWorld;
}
[Inject] RotationScaleToLocalToWorld rotationScaleToLocalToWorld;

struct ScaleToLocalToWorld
{
 SubtractiveComponent<Position> Position;
 SubtractiveComponent<Rotation> Rotation;
 ComponentDataArray<Scale> Scale;
 ComponentDataArray<LocalToWorld> LocalToWorld;
}
[Inject] ScaleToLocalToWorld scaleToLocalToWorld;

ComponentGroup is a utility which simplifies iteration over same component type values independent of the Archetypes those components belong to. ComponentGroup accomplishes this by constraining the types of Archetypes that are queried: Either components which must exist in all matching Archetypes or components which exist in none of the matching Archetypes (subtractive). By contrast, Chunks can be iterated in a way that matches how the data is layed out in memory without those same constraints. However, this is at the cost of foregoing ComponentGroup, automatic injection and other associated utilities.

Direct Chunk iteration allows for “optional” components or managing component combinations more directly.

Another alternative might be to use ComponentDataFromEntity and check for the existence of the components on a per-Entity basis, as in:

[Inject] [ReadOnly] ComponentDataFromEntity<Position> positions;
[Inject] [ReadOnly] ComponentDataFromEntity<Rotation> rotations;
[Inject] [ReadOnly] ComponentDataFromEntity<Scale> scales;

struct LocalToWorldGroup
{
 EntityArray Entities;
 ComponentDataArray<LocalToWorld> LocalToWorld;
}
[Inject] LocalToWorldGroup localToWorldGroup;

An advantage of direct Chunk iteration is that any branching that needs to be done based on the existence of a particular component type can be done on a per-Chunk basis rather than a per-entity basis.

Querying matching archetypes

Each Chunk belongs to a specific Archetype. In order to iterate Chunks, you must select a set of Archetypes. This is an EntityArchetypeQuery.

public class EntityArchetypeQuery
{
 public ComponentType[] Any;
 public ComponentType[] None;
 public ComponentType[] All;
}

An example might look like:

var RootLocalToWorldQuery = new EntityArchetypeQuery
{
 Any = new ComponentType[] {typeof(Rotation), typeof(Position), typeof(Scale)},
 None = new ComponentType[] {typeof(Frozen), typeof(Parent)},
 All = new ComponentType[] {typeof(LocalToWorld)},
};

Which means RootLocalToWorldQuery will request all archetypes that meet the following conditions:

	Archetype has at least one of Rotation, Position, or Scale component type.

	Archetype does not have Frozen or Parent component types.

	Archetype must have LocalToWorld component type.

You can resolve the query with a call to EntityManager.AddMatchingArchetypes(EntityArchetypeQuery query, NativeList<EntityArchetype> foundArchetypes)

Additional calls to AddMatchingArchetypes passing in the results of previous calls to foundArchetypes will append additional results to the NativeList. The logical-or of multiple queries.

Be aware that EntityArchetypeQuery uses managed arrays so they should not be created per frame. OnCreate in a ComponentSystem or JobComponentSystem is more appropriate.

Getting array of Chunks

From a NativeList<EntityArchetype> you can retrieve the list of Chunks in those Archetypes with a call to EntityManager.CreateArchetypeChunkArray(NativeList<EntityArchetype> archetypes, Allocator allocator) which will return a NativeArray<ArchetypeChunk>.

There is also a utility function EntityManager.CreateArchetypeChunkArray(EntityArchetypeQuery query, Allocator allocator) which takes a single EntityArchetypeQuery directly and will return a NativeArray. This Simplifies the case where no logical-or between multiple EntityArchetypeQuery is needed.

 ComponentData

ComponentData

ComponentData in Unity (also known as a Component in standard ECS terms) is a struct that contains only the instance data for an Entity. ComponentData cannot contain methods. To put this in terms of the old Unity system, this is somewhat similar to an old Component class, but one that only contains variables.

Unity ECS provides an interface called IComponentData that you can implement in your code.

IComponentData

Traditional Unity components (including MonoBehaviour) are object-oriented [https://en.wikipedia.org/wiki/Object-oriented_programming] classes which contain data and methods for behavior. IComponentData is a pure ECS-style component, meaning that it defines no behavior, only data. IComponentData is a struct rather than a class, meaning that it is copied by value instead of by reference [https://stackoverflow.com/questions/373419/whats-the-difference-between-passing-by-reference-vs-passing-by-value?answertab=votes#tab-top] by default. You will usually need to use the following pattern to modify data:

var transform = group.transform[index]; // Read

transform.heading = playerInput.move; // Modify
transform.position += deltaTime * playerInput.move * settings.playerMoveSpeed;

group.transform[index] = transform; // Write

IComponentData structs may not contain references to managed objects. Since the all ComponentData lives in simple non-garbage-collected tracked chunk memory.

Back to Capsicum reference

 ComponentDataFromEntity

ComponentDataFromEntity

The Entity struct identifies an entity. If you need to access ComponentData on another Entity, the only stable way of referencing that ComponentData is via the Entity ID. EntityManager provides a simple get & set ComponentData API for it.

Entity myEntity = ...;
var position = EntityManager.GetComponentData<LocalPosition>(entity);
...
EntityManager.SetComponentData(entity, position);

However, EntityManager can’t be used in a C# job. ComponentDataFromEntity gives you a simple API that can also be safely used in a job.

// ComponentDataFromEntity can be automatically injected
[Inject]
ComponentDataFromEntity<LocalPosition> m_LocalPositions;

Entity myEntity = ...;
var position = m_LocalPositions[myEntity];

Back to Capsicum reference

 ComponentGroup

ComponentGroup

The ComponentGroup is a foundation class on top of which all iteration methods are built (Injection, foreach, IJobProcessComponentData etc)

Essentially a ComponentGroup is constructed with a set of required components, and/or subtractive components.

The ComponentGroup lets you extract individual arrays. All these arrays are guaranteed to be in sync (same length and the index of each array refers to the same Entity).

Generally speaking GetComponentGroup is used rarely, since ComponentGroup Injection and IJobProcessComponetnData is simpler and more expressive.

However the ComponentGroup API can be used for more advanced use cases like filtering a Component Group based on specific SharedComponent values.

struct SharedGrouping : ISharedComponentData
{
 public int Group;
}

class PositionToRigidbodySystem : ComponentSystem
{
 ComponentGroup m_Group;

 protected override void OnCreateManager(int capacity)
 {
 // GetComponentGroup should always be cached from OnCreateManager, never from OnUpdate
 // - ComponentGroup allocates GC memory
 // - Relatively expensive to create
 // - Component type dependencies of systems need to be declared during OnCreateManager,
 // in order to allow automatic ordering of systems
 m_Group = GetComponentGroup(typeof(Position), typeof(Rigidbody), typeof(SharedGrouping));
 }

 protected override void OnUpdate()
 {
 // Only iterate over entities that have the SharedGrouping data set to 1
 // (This could for example be used as a form of gamecode LOD)
 m_Group.SetFilter(new SharedGrouping { Group = 1 });

 var positions = m_Group.GetComponentDataArray<Position>();
 var rigidbodies = m_Group.GetComponentArray<Rigidbody>();

 for (int i = 0; i != positions.Length; i++)
 rigidbodies[i].position = positions[i].Value;

 // NOTE: GetAllUniqueSharedComponentDatas can be used to find all unique shared components
 // that are added to entities.
 // EntityManager.GetAllUniqueSharedComponentDatas(List<T> shared);
 }
}

Back to Capsicum reference

 ComponentSystem

ComponentSystem

A ComponentSystem in Unity (also known as a system in standard ECS terms) performs operations on entities. A ComponentSystem cannot contain instance data. To put this in terms of the old Unity system, this is somewhat similar to an old Component [https://docs.unity3d.com/Manual/Components.html] class, but one that only contains methods. One ComponentSystem is responsible for updating all Entities with a matching set of components (that is defined within a struct called a ComponentGroup).

Unity ECS provides an abstract class called ComponentSystem that you can extend in your code.

See also: System update order.

Back to Capsicum reference

 Custom job types

Custom job types

On the lowest level of the job system, jobs are scheduled by calling one of the Schedule functions in JobsUtility [https://docs.unity3d.com/ScriptReference/Unity.Jobs.LowLevel.Unsafe.JobsUtility.html]. The currently existing job types [https://docs.unity3d.com/ScriptReference/Unity.Jobs.LowLevel.Unsafe.JobType.html] all use these functions, but it is also possible to create specialized job types using the same APIs.

These APIs use unsafe code and have to be crafted carefully, since they can easily introduce unwanted race conditions. If you add your own job types, we strongly recommend to aim for full test coverage.

As an example we have a custom job type IJobParallelForBatch.

It works like IJobParallelFor, but instead of calling a single execute function per index it calls one execute function per batch being executed. This is useful if you need to do something on more than one item at a time, but still want to do it in parallel. A common scenario for this job type is if you need to create a temporary array and you want to avoid creating each item in the array one at a time. By using IJobParallelFor you can instead create one temporary array per batch.

In the IJobParallelForBatch example, the entry point where the job is actually scheduled looks like this:

unsafe static public JobHandle ScheduleBatch<T>(this T jobData, int arrayLength, int minIndicesPerJobCount, JobHandle dependsOn = new JobHandle()) where T : struct, IJobParallelForBatch
{
 var scheduleParams = new JobsUtility.JobScheduleParameters(UnsafeUtility.AddressOf(ref jobData), ParallelForBatchJobStruct<T>.Initialize(), dependsOn, ScheduleMode.Batched);
 return JobsUtility.ScheduleParallelFor(ref scheduleParams, arrayLength, minIndicesPerJobCount);
}

The first line creates a struct containing the scheduling parameters. When creating it you need to set a pointer to the data which will be copied to the jobs. The reason this is a pointer is that the native code which uses it does not know about the type.
You also need to pass it a pointer to the JobReflectionData created by calling:

JobsUtility.CreateJobReflectionData(typeof(T), JobType.ParallelFor, (ExecuteJobFunction)Execute);

JobReflection stores information about the struct with the data for the job, such as which NativeContainers it has and how they need to be patched when scheduling a job. It lives on the native side of the engine and the managed code only has access to it though pointers without any information about what the type is. When creating JobReflectionData you need to specify the type of the struct implementing the job, the JobType and the method which will be called to execute the job. The JobReflectionData does not depend on the data in the struct you schedule, only its type, so it should only be created once for all jobs implementing the same interface. There are currently only two job types, Single and ParallelFor. Single means the job will only get a single call, ParallelFor means there will be multiple calls to process it; where each call is restricted to a subset of the range of indices to process. Which job type you choose affects which schedule function you are allowed to call.

The third parameter of JobsUtility.JobScheduleParameters is the JobHandle that the scheduled job should depend on.

The final parameter is the schedule mode. There are two scheduling modes to choose from, Run and Batched. Batched means one or more jobs will be scheduled to do the processing, while Run means the processing will be done on the main thread before Schedule returns.

Once the schedule parameters are created we actually schedule the job. There are three ways to schedule jobs depending on their type:

JobHandle Schedule(ref JobScheduleParameters parameters);
JobHandle ScheduleParallelFor(ref JobScheduleParameters parameters, int arrayLength, int innerLoopBatchCount);
JobHandle ScheduleParallelForTransform(ref JobScheduleParameters parameters, IntPtr transfromAccessArray);

Schedule can only be used if the ScheduleParameters are created with JobType.Single, the other two schedule functions require JobType.ParallelFor.
The arrayLength and innerLoopBatchCount parameter passed to ScheduleParallelFor are used to determine how many indices the jobs should process and how many indices it should handle in the inner loop (see the section on Execution and JobRanges for more information on the inner loop count).
ScheduleParallelForTransform is similar to ScheduleParallelFor, but it also has access to a TransformAccessArray that allows you to modify Transform components on GameObjects. The number of indices and batch size is inferred from the TransformAccessArray.

Execution and JobRanges

After scheduling the job, Unity will call the entry point you specified directly from the native side. It works in a similar way to how Update is called on MonoBehaviours, but from inside a job instead. You only get one call per job and there is either one job, or one job per worker thread; in the case of ParallelFor.

The signature used for Execute is

public delegate void ExecuteJobFunction(ref T data, IntPtr additionalPtr, IntPtr bufferRangePatchData, ref JobRanges ranges, int jobIndex);

For Single jobs, only the data is needed and you can just do your processing right away, but for ParallelFor jobs it requires some more work before you can start processing indices. We need to split up the indices into a number of sequential sub-sets that each job will process in parallel. This way we do not process the same thing twice and we are sure that everything gets covered. The memory layout will determine the order of indices.

The JobRanges contain the batches and indices a ParallelFor job is supposed to process. The indices are split into batches based on the batch size, the batches are evenly distributed between the jobs doing the execution in such a way that each job can iterate over a continuous section of memory. The ParallelFor job should call:

JobsUtility.GetWorkStealingRange(ref ranges, jobIndex, out begin, out end)

This continues until it returns false, and after calling it process all items with index between begin and end.
The reason you get batches of items, rather than the full set of items the job should process, is that Unity will apply work stealing [https://en.wikipedia.org/wiki/Work_stealing] if one job completes before the others. Work stealing in this context means that when one job is done it will look at the other jobs running and see if any of them still have a lot of work left. If it finds a job which is not complete it will steal some of the batches that it has not yet started; to dynamically redistribute the work.

Before a ParallelFor job starts processing items it also needs to limit the write access to NativeContainers on the range of items which the job is processing. If it does not do this several jobs can potentially write to the same index which leads to race conditions. The NativeContainers that need to be limited is passed to the job and there is a function to patch them; so they cannot access items outside the correct range. The code to do it looks like this:

#if ENABLE_UNITY_COLLECTIONS_CHECKS
JobsUtility.PatchBufferMinMaxRanges(bufferRangePatchData, UnsafeUtility.AddressOf(ref jobData), begin, end - begin);
#endif

Custom NativeContainers

When writing jobs, the data communication between jobs is one of the hardest parts to get right. Just using NativeArray is very limiting. Using NativeQueue, NativeHashMap and NativeMultiHashMap and their Concurrent versions solves most scenarios.

For the remaining scenarios it is possible to write your own custom NativeContainers.
When writing custom containers for thread synchronization [https://en.wikipedia.org/wiki/Synchronization_(computer_science)#Thread_or_process_synchronization] it is very important to write correct code. We strongly recommend full test coverage for any new containers you add.

As a very simple example of this we will create a NativeCounter that can be incremented in a ParallelFor job through NativeCounter.Concurrent and read in a later job or on the main thread.

Let’s start with the basic container type:

// Mark this struct as a NativeContainer, usually this would be a generic struct for containers, but a counter does not need to be generic
// TODO - why does a counter not need to be generic? - explain the argument for this reasoning please.
[StructLayout(LayoutKind.Sequential)]
[NativeContainer]
unsafe public struct NativeCounter
{
 // The actual pointer to the allocated count needs to have restrictions relaxed so jobs can be schedled with this container
 [NativeDisableUnsafePtrRestriction]
 int* m_Counter;

#if ENABLE_UNITY_COLLECTIONS_CHECKS
 AtomicSafetyHandle m_Safety;
 // The dispose sentinel tracks memory leaks. It is a managed type so it is cleared to null when scheduling a job
 // The job cannot dispose the container, and no one else can dispose it until the job has run, so it is ok to not pass it along
 // This attribute is required, without it this NativeContainer cannot be passed to a job; since that would give the job access to a managed object
 [NativeSetClassTypeToNullOnSchedule]
 DisposeSentinel m_DisposeSentinel;
#endif

 // Keep track of where the memory for this was allocated
 Allocator m_AllocatorLabel;

 public NativeCounter(Allocator label)
 {
 // This check is redundant since we always use an int that is blittable.
 // It is here as an example of how to check for type correctness for generic types.
#if ENABLE_UNITY_COLLECTIONS_CHECKS
 if (!UnsafeUtility.IsBlittable<int>())
 throw new ArgumentException(string.Format("{0} used in NativeQueue<{0}> must be blittable", typeof(int)));
#endif
 m_AllocatorLabel = label;

 // Allocate native memory for a single integer
 m_Counter = (int*)UnsafeUtility.Malloc(UnsafeUtility.SizeOf<int>(), 4, label);

 // Create a dispose sentinel to track memory leaks. This also creates the AtomicSafetyHandle
#if ENABLE_UNITY_COLLECTIONS_CHECKS
 DisposeSentinel.Create(out m_Safety, out m_DisposeSentinel, 0);
#endif
 // Initialize the count to 0 to avoid uninitialized data
 Count = 0;
 }

 public void Increment()
 {
 // Verify that the caller has write permission on this data.
 // This is the race condition protection, without these checks the AtomicSafetyHandle is useless
#if ENABLE_UNITY_COLLECTIONS_CHECKS
 AtomicSafetyHandle.CheckWriteAndThrow(m_Safety);
#endif
 (*m_Counter)++;
 }

 public int Count
 {
 get
 {
 // Verify that the caller has read permission on this data.
 // This is the race condition protection, without these checks the AtomicSafetyHandle is useless
#if ENABLE_UNITY_COLLECTIONS_CHECKS
 AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
 return *m_Counter;
 }
 set
 {
 // Verify that the caller has write permission on this data. This is the race condition protection, without these checks the AtomicSafetyHandle is useless
#if ENABLE_UNITY_COLLECTIONS_CHECKS
 AtomicSafetyHandle.CheckWriteAndThrow(m_Safety);
#endif
 *m_Counter = value;
 }
 }

 public bool IsCreated
 {
 get { return m_Counter != null; }
 }

 public void Dispose()
 {
 // Let the dispose sentinel know that the data has been freed so it does not report any memory leaks
#if ENABLE_UNITY_COLLECTIONS_CHECKS
 DisposeSentinel.Dispose(m_Safety, ref m_DisposeSentinel);
#endif

 UnsafeUtility.Free(m_Counter, m_AllocatorLabel);
 m_Counter = null;
 }
}

With this we have a simple NativeContainer where we can get, set, and increment the count. This container can be passed to a job, but it has the same restrictions as NativeArray, which means it cannot be passed to a ParallelFor job with write access.

The next step is to make it usable in ParallelFor. In order to avoid race conditions we want to make sure no-one else is reading it while the ParallelFor is writing to it. To achieve this we create a separate inner struct called Concurrent that can handle multiple writers, but no readers. We make sure NativeCounter.Concurrent can be assigned to from within a normal NativeCounter, since it is not possible for it to live separately outside a NativeCounter. TODO - why is that?

[NativeContainer]
// This attribute is what makes it possible to use NativeCounter.Concurrent in a ParallelFor job
[NativeContainerIsAtomicWriteOnly]
unsafe public struct Concurrent
{
 // Copy of the pointer from the full NativeCounter
 [NativeDisableUnsafePtrRestriction]
 int* m_Counter;

 // Copy of the AtomicSafetyHandle from the full NativeCounter. The dispose sentinel is not copied since this inner struct does not own the memory and is not responsible for freeing it.
#if ENABLE_UNITY_COLLECTIONS_CHECKS
 AtomicSafetyHandle m_Safety;
#endif

 // This is what makes it possible to assign to NativeCounter.Concurrent from NativeCounter
 public static implicit operator NativeCounter.Concurrent (NativeCounter cnt)
 {
 NativeCounter.Concurrent concurrent;
#if ENABLE_UNITY_COLLECTIONS_CHECKS
 AtomicSafetyHandle.CheckWriteAndThrow(cnt.m_Safety);
 concurrent.m_Safety = cnt.m_Safety;
 AtomicSafetyHandle.UseSecondaryVersion(ref concurrent.m_Safety);
#endif

 concurrent.m_Counter = cnt.m_Counter;
 return concurrent;
 }

 public void Increment()
 {
 // Increment still needs to check for write permissions
#if ENABLE_UNITY_COLLECTIONS_CHECKS
 AtomicSafetyHandle.CheckWriteAndThrow(m_Safety);
#endif
 // The actual increment is implemented with an atomic, since it can be incremented by multiple threads at the same time
 Interlocked.Increment(ref *m_Counter);
 }
}

With this setup we can schedule ParallelFor with write access to a NativeCounter through the inner Concurrent struct, like this:

struct CountZeros : IJobParallelFor
{
 [ReadOnly]
 public NativeArray<int> input;
 public NativeCounter.Concurrent counter;
 public void Execute(int i)
 {
 if (input[i] == 0)
 {
 counter.Increment();
 }
 }
}

var counter = new NativeCounter(Allocator.Temp);
var jobData = new CountZeros();
jobData.input = input;
jobData.counter = counter;
counter.Count = 0;

var handle = jobData.Schedule(input.Length, 8);
handle.Complete();

Debug.Log("The array countains " + counter.Count + " zeros");
counter.Dispose();

Better cache usage

The NativeCounter from the previous section is a working implementation of a counter, but all jobs in the ParallelFor will access the same atomic to increment the value. This is not optimal as it means the same cache line is used by all threads.
The way this is generally solved in NativeContainers is to have a local cache per worker thread, which is stored on its own cache line.

The [NativeSetThreadIndex] attribute can inject a worker thread index, the index is guaranteed to be unique while accessing the NativeContainer from the ParallelFor jobs.

In order to make such an optimization here we need to change a few things. The first thing we need to change is the data layout. For performance reasons we need one full cache line per worker thread, rather than a single int to avoid false sharing [https://en.wikipedia.org/wiki/False_sharing].

We start by adding a constant for the number of ints on a cache line.

public const int IntsPerCacheLine = JobsUtility.CacheLineSize / sizeof(int);

Next we change the amount of memory allocated.

// One full cache line (integers per cacheline * size of integer) for each potential worker index, JobsUtility.MaxJobThreadCount
m_Counter = (int*)UnsafeUtility.Malloc(UnsafeUtility.SizeOf<int>()*IntsPerCacheLine*JobsUtility.MaxJobThreadCount, 4, label);

TODO: I’m not sure which example you are referring to when you say: main, non-concurrent, version below (is this an example you used on this page or what you would do if you were not using jobified code/ECS etc. It has potential for confusion.)

When accessing the counter from the main, non-concurrent, version there can only be one writer so the increment function is fine with the new memory layout.
For get and set of the count we need to loop over all potential worker indices.

public int Count
{
 get
 {
 // Verify that the caller has read permission on this data.
 // This is the race condition protection, without these checks the AtomicSafetyHandle is useless
#if ENABLE_UNITY_COLLECTIONS_CHECKS
 AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
 int count = 0;
 for (int i = 0; i < JobsUtility.MaxJobThreadCount; ++i)
 count += m_Counter[IntsPerCacheLine * i];
 return count;
 }
 set
 {
 // Verify that the caller has write permission on this data.
 // This is the race condition protection, without these checks the AtomicSafetyHandle is useless
#if ENABLE_UNITY_COLLECTIONS_CHECKS
 AtomicSafetyHandle.CheckWriteAndThrow(m_Safety);
#endif
 // Clear all locally cached counts,
 // set the first one to the required value
 for (int i = 1; i < JobsUtility.MaxJobThreadCount; ++i)
 m_Counter[IntsPerCacheLine * i] = 0;
 *m_Counter = value;
 }
}

The final change is the inner Concurrent struct that needs to get the worker index injected into it. Since each worker only runs one job at a time, there is no longer any need to use atomics when only accessing the local count.

[NativeContainer]
[NativeContainerIsAtomicWriteOnly]
// Let the job system know that it should inject the current worker index into this container
unsafe public struct Concurrent
{
 [NativeDisableUnsafePtrRestriction]
 int* m_Counter;

#if ENABLE_UNITY_COLLECTIONS_CHECKS
 AtomicSafetyHandle m_Safety;
#endif

 // The current worker thread index; it must use this exact name since it is injected
 [NativeSetThreadIndex]
 int m_ThreadIndex;

 public static implicit operator NativeCacheCounter.Concurrent (NativeCacheCounter cnt)
 {
 NativeCacheCounter.Concurrent concurrent;
#if ENABLE_UNITY_COLLECTIONS_CHECKS
 AtomicSafetyHandle.CheckWriteAndThrow(cnt.m_Safety);
 concurrent.m_Safety = cnt.m_Safety;
 AtomicSafetyHandle.UseSecondaryVersion(ref concurrent.m_Safety);
#endif

 concurrent.m_Counter = cnt.m_Counter;
 concurrent.m_ThreadIndex = 0;
 return concurrent;
 }

 public void Increment()
 {
#if ENABLE_UNITY_COLLECTIONS_CHECKS
 AtomicSafetyHandle.CheckWriteAndThrow(m_Safety);
#endif
 // No need for atomics any more since we are just incrementing the local count
 ++m_Counter[IntsPerCacheLine*m_ThreadIndex];
 }
}

Writing the NativeCounter this way significantly reduces the overhead of having multiple threads writing to it. It does, however, come at a price. The cost of getting the count on the main thread has increased significantly since it now needs to check all local caches and sum them up. If you are aware of this and make sure to cache the return values it is usually worth it, but you need to know the limitations of your data structures. So we strongly recommend documenting the performance characteristics.

Tests

The NativeCounter is not complete, the only thing left is to add tests for it to make sure it is correct and that it does not break in the future. When writing tests you should try to cover as many unusual scenarios as possible. It is also a good idea to add some kind of stress test using jobs to detect race conditions, even if it is unlikely to find all of them. The NativeCounter API is very small so the number of tests required is not huge.

	Both versions of the counter examples above are available at: /ECSJobDemos/Assets/NativeCounterDemo.

	The tests for them can be found at: /ECSJobDemos/Assets/NativeCounterDemo/Editor/NativeCounterTests.cs.

Available attributes

The NativeCounter uses many attributes, but there are a few more available for other types of containers. Here is a list of the available attributes you can use on the NativeContainer struct.

	NativeContainer [https://docs.unity3d.com/2018.1/Documentation/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeContainerAttribute.html] - marks a struct as a NativeContainer.Required for all native containers.

	NativeContainerSupportsMinMaxWriteRestriction [https://docs.unity3d.com/2018.1/Documentation/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeContainerSupportsMinMaxWriteRestrictionAttribute.html] - signals that the NativeContainer can restrict its writable ranges to be between a min and max index. This is used when passing the container to an IJobParallelFor to make sure that the job does not write to indices it is not supposed to process. In order to use this the NativeContainer must have the members int m_Length, int m_MinIndex and int m_MaxIndex in that order with no other members between them. The container must also throw an exception for writes outside the min/max range.

	NativeContainerIsAtomicWriteOnly [https://docs.unity3d.com/2018.1/Documentation/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeContainerIsAtomicWriteOnlyAttribute.html] - signals that the NativeContainer uses atomic writes and no reads. By adding this is is possible to pass the NativeContainer to an IJobParallelFor as writable without restrictions on which indices can be written to.

	NativeContainerSupportsDeallocateOnJobCompletion [https://docs.unity3d.com/2018.1/Documentation/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeContainerSupportsDeallocateOnJobCompletionAttribute.html] - makes the NativeContainer usable with DeallocateOnJobCompletion [https://docs.unity3d.com/2018.1/Documentation/ScriptReference/Unity.Collections.DeallocateOnJobCompletionAttribute.html]. In order to use this the NativeContainer must have a single allocation in m_Buffer, an allocator label in m_AllocatorLabel and a dispose sentinel in m_DisposeSentinel.

	NativeSetThreadIndex [https://docs.unity3d.com/2018.1/Documentation/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeSetThreadIndexAttribute.html] - Patches an int with the thread index of the job.

In addition to these attributes on the native container struct itself there are a few attributes which can be used on members of the native container.

	NativeDisableUnsafePtrRestriction [https://docs.unity3d.com/2018.1/Documentation/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeDisableUnsafePtrRestrictionAttribute.html] - allows the NativeContainer to be passed to a job even though it contains a pointer, which is usually not allowed.

	NativeSetClassTypeToNullOnSchedule [https://docs.unity3d.com/2018.1/Documentation/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeSetClassTypeToNullOnScheduleAttribute.html] - allows the NativeContainer to be passed to a job even though it contains a managed object. The managed object will be set to null on the copy passed to the job.

Back to Capsicum reference

 Dependency

Dependency

General computing term. Also known as coupling.

Jenkov [http://tutorials.jenkov.com/ood/understanding-dependencies.html]: “Whenever a class A uses another class… B, then A depends on B. A cannot carry out it’s work without B, and A cannot be reused without also reusing B. In such a situation the class A is called the ‘dependant’ and the class… B is called the ‘dependency’. A dependant depends on its dependencies.”

Back to Capsicum reference

 Dynamic Buffers

Dynamic Buffers

A DynamicBuffer is a type of component data that allows a variable-sized, “stretchy”
buffer to be associated with an Entity. It behaves as a component type that
carries an internal capacity of a certain number of elements, but can allocate
a heap memory block if the internal capacity is exhausted.

Memory management is fully automatic when using this approach. Memory associated with
DynamicBuffers is managed by the EntityManager so that when a DynamicBuffer
component is removed, any associated heap memory is automatically freed as well.

DynamicBuffers supersede fixed array support which has been removed.

Declaring Buffer Element Types

To declare a Buffer, you declare it with the type of element that you will be
putting into the Buffer:

// This describes the number of buffer elements that should be reserved
// in chunk data for each instance of a buffer. In this case, 8 integers
// will be reserved (32 bytes) along with the size of the buffer header
// (currently 16 bytes on 64-bit targets)
[InternalBufferCapacity(8)]
public struct MyBufferElement : IBufferElementData
{
 // These implicit conversions are optional, but can help reduce typing.
 public static implicit operator int(MyBufferElement e) { return e.Value; }
 public static implicit operator MyBufferElement(int e) { return new MyBufferElement { Value = e }; }

 // Actual value each buffer element will store.
 public int Value;
}

While it seem strange to describe the element type and not the Buffer itself,
this design enables two key benefits in the ECS:

	It supports having more than one DynamicBuffer of type float3, or any
other common value type. You can add any number of Buffers that leverage the
same value types, as long as the elements are uniquely wrapped in a top-level
struct.

	We can include Buffer element types in EntityArchetypes, and it generally
will behave like having a component.

Adding Buffer Types To Entities

To add a buffer to an Entity, you can use the normal methods of adding a
component type onto an Entity:

Using AddBuffer()

entityManager.AddBuffer<MyBufferElement>(entity);

Using an archetype

Entity e = entityManager.CreateEntity(typeof(MyBufferElement));

Accessing Buffers

There are several ways to access DynamicBuffers, which parallel access methods
to regular component data.

Direct, main-thread only access

DynamicBuffer<MyBufferElement> buffer = entityManager.GetBuffer<MyBufferElement>(entity);

Injection based access

Similar to ComponentDataArray you can inject a BufferArray which provides
the DynamicBuffers in a parallel array to the other injections. This example
provides a system that appends a value to every Buffer in an injected set:

public class InjectionDemo : JobComponentSystem
{
 public struct Data
 {
 public readonly int Length;
 public BufferArray<EcsIntElement> Buffers;
 }

 [Inject] Data m_Data;

 public struct MyJob : IJobParallelFor
 {
 public BufferArray<EcsIntElement> Buffers;

 public void Execute(int i)
 {
 Buffers[i].Append(i * 3);
 }
 }

 protected override JobHandle OnUpdate(JobHandle inputDeps)
 {
 return new MyJob { Buffers = m_Data.Buffers }.Schedule(m_Data.Length, 32, inputDeps);
 }
}

Entity based access

You can also look up Buffers on a per-Entity basis:

 var lookup = GetBufferArrayFromEntity<EcsIntElement>();
 var buffer = lookup[myEntity];
 buffer.Append(17);
 buffer.RemoveAt(0);

Entity based injection access

Similarly to injecting ComponentDataFromEntity you can inject
BufferDataFromEntity and look up Buffers indirectly.

Reinterpreting Buffers (experimental)

Buffers can be reinterpreted as a type of the same size. The intention is to
allow controlled type-punning and to get rid of the wrapper element types when
they get in the way. To reinterpret, simply call Reinterpret<T>:

var intBuffer = entityManager.GetBuffer<EcsIntElement>().Reinterpret<int>();

The reinterpreted Buffer carries with it the safety handle of the original
Buffer, and is safe to use. They use the same underlying BufferHeader, so
modifications to one reinterpreted Buffer will be immediately reflected in
others.

Note that there are no type checks involved, so it is entirely possible to
alias a uint and float buffer.

Back to Capsicum reference

 ECS

ECS

A general computing term that is also used in Unity.

An entity-component-system [https://en.wikipedia.org/wiki/Entity%E2%80%93component%E2%80%93system] (ECS) is a new model to write performant code by default. Instead of using Object-Oriented Design [https://en.wikipedia.org/wiki/Object-oriented_design] (OOD), ECS takes advantage of another paradigm called Data-Oriented Design [https://en.wikipedia.org/wiki/Data-oriented_design]. This separates out the data from the logic so you can apply instructions to a large batch of items in parallel. The Entity-component-system gurantees linear data layout [https://en.wikipedia.org/wiki/Flat_memory_model] when iterating over entities in chunks. Managing data this way is quicker because you read from continuous blocks of memory, rather than random blocks assigned all over the place. Knowing exactly where each bit of data is, and by packing it tightly together, allows us to manage memory with little overhead. This is a critical part of the performance gains provided by ECS.

Note: Unity’s ECS is a fairly standard entity-component-system, although the naming is tweaked somewhat to avoid clashes with existing concepts within Unity. (See ECS concepts for more information.)

See also: Entity, ComponentData, and ComponentSystem.

Back to Capsicum reference

 Entity

Entity

Entity is an ID. You can think of it as a super lightweight GameObject [https://docs.unity3d.com/Manual/class-GameObject.html] that does not even have a name by default.

You can add and remove components from entities at runtime. Entity ID’s are stable. They are the only stable way to store a reference to another component or Entity.

You can add and remove components from entities at runtime in much the same way as a GameObject. Entities can be created from Prefabs [https://docs.unity3d.com/Manual/Prefabs.html] by using ComponentDataWrapper. The EntityManager will parse the Prefab for ComponentData and add it when it creates the Entity.

Iterating entities

Iterating over all entities that have a matching set of components, is at the center of the ECS architecture.

Back to Capsicum reference

 EntityArchetype

EntityArchetype

An EntityArchetype is a unique array of ComponentType. EntityManager uses EntityArchetype stucts to group all entities using the same component types in Chunks.

// Using typeof to create an EntityArchetype from a set of components
EntityArchetype archetype = EntityManager.CreateArchetype(typeof(MyComponentData), typeof(MySharedComponent));

// Same API but slightly more efficient
EntityArchetype archetype = EntityManager.CreateArchetype(ComponentType.Create<MyComponentData>(), ComponentType.Create<MySharedComponent>());

// Create an Entity from an EntityArchetype
var entity = EntityManager.CreateEntity(archetype);

// Implicitly create an EntityArchetype for convenience
var entity = EntityManager.CreateEntity(typeof(MyComponentData), typeof(MySharedComponent));

Back to Capsicum reference

 EntityCommandBuffer

EntityCommandBuffer

The EntityCommandBuffer class solves two important problems:

	When you’re in a job, you can’t access the EntityManager.

	When you access the EntityManager (to say, create an Entity) you invalidate all injected arrays and ComponentGroup objects.

The EntityCommandBuffer abstraction allows you to queue up changes (from either a job or from the main thread) so that they can take effect later on the main thread. There are two ways to use a EntityCommandBuffer:

	ComponentSystem subclasses which update on the main thread have one available automatically called PostUpdateCommands. To use it, simply reference the attribute and queue up your changes. They will be automatically applied to the world immediately after you return from your system’s Update function.

Here’s an example from the two stick shooter sample:

PostUpdateCommands.CreateEntity(TwoStickBootstrap.BasicEnemyArchetype);
PostUpdateCommands.SetComponent(new Position2D { Value = spawnPosition });
PostUpdateCommands.SetComponent(new Heading2D { Value = new float2(0.0f, -1.0f) });
PostUpdateCommands.SetComponent(default(Enemy));
PostUpdateCommands.SetComponent(new Health { Value = TwoStickBootstrap.Settings.enemyInitialHealth });
PostUpdateCommands.SetComponent(new EnemyShootState { Cooldown = 0.5f });
PostUpdateCommands.SetComponent(new MoveSpeed { speed = TwoStickBootstrap.Settings.enemySpeed });
PostUpdateCommands.AddSharedComponent(TwoStickBootstrap.EnemyLook);

As you can see, the API is very similar to the EntityManager API. In this mode, it is helpful to think of the automatic EntityCommandBuffer as a convenience that allows you to prevent array invalidation inside your system while still making changes to the world.

	For jobs, you must request EntityCommandBuffer from a barrier on the main thread, and pass them to jobs. When the BarrierSystem updates, the command buffers will play back on the main thread in the order they were created. This extra step is required so that memory management can be centralized and determinism of the generated entities and components can be guaranteed.

Again let’s look at the two stick shooter sample to see how this works in practice.

Barrier

First, a BarrierSystem is declared:

public class ShotSpawnBarrier : BarrierSystem
{}

There’s no code in a BarrierSystem, it just serves as a synchronization point.

Next, we inject this barrier into the system that will request command buffers from it:

[Inject] private ShotSpawnBarrier m_ShotSpawnBarrier;

Now we can access the barrier when we’re scheduling jobs and ask for command
buffers from it via CreateCommandBuffer():

return new SpawnEnemyShots
{
 // ...
 CommandBuffer = m_ShotSpawnBarrier.CreateCommandBuffer(),
 // ...
}.Schedule(inputDeps);

In the job, we can use the command buffer normally:

CommandBuffer.CreateEntity(ShotArchetype);
CommandBuffer.SetComponent(spawn);

When the BarrierSystem updates, it will automatically play back the command buffers. It’s worth noting that the BarrierSystem will take a dependency on any jobs spawned by systems that access it (so that it can know that the command buffers have been filled in fully). If you see bubbles in the frame, it may make sense to try moving the barrier later in the frame, if your game logic allows for this.

Using EntityCommandBuffers from ParallelFor jobs

When using an EntityCommandBuffer to issue EntityManager commands from ParallelFor jobs [https://docs.unity3d.com/Manual/JobSystemParallelForJobs.html], the EntityCommandBuffer.Concurrent interface is used to guarantee thread safety and deterministic playback. The public methods in this interface take an extra jobIndex parameter, which is used to playback the recorded commands in a deterministic order. The jobIndex must be a unique ID for each job. For performance reasons, jobIndex should be the (increasing) index values passed to IJobParallelFor.Execute(). Unless you really know what you’re doing, using the index as jobIndex is the safest choice. Using other jobIndex values will produce the correct output, but can have severe performance implications in some cases.

Back to Capsicum reference

 EntityManager

EntityManager

The EntityManager owns EntityData, EntityArchetypes, SharedComponentData and ComponentGroup.

EntityManager is where you find APIs to create entities, check if an Entity is still alive, instantiate entities and add or remove components.

// Create an Entity with no components on it
var entity = EntityManager.CreateEntity();

// Adding a component at runtime
EntityManager.AddComponent(entity, new MyComponentData());

// Get the ComponentData
MyComponentData myData = EntityManager.GetComponentData<MyComponentData>(entity);

// Set the ComponentData
EntityManager.SetComponentData(entity, myData);

// Removing a component at runtime
EntityManager.RemoveComponent<MyComponentData>(entity);

// Does the Entity exist and does it have the component?
bool has = EntityManager.HasComponent<MyComponentData>(entity);

// Is the Entity still alive?
bool has = EntityManager.Exists(entity);

// Instantiate the Entity
var instance = EntityManager.Instantiate(entity);

// Destroy the created instance
EntityManager.DestroyEntity(instance);

// EntityManager also provides batch APIs
// to create and destroy many Entities in one call.
// They are significantly faster
// and should be used where ever possible
// for performance reasons.

// Instantiate 500 Entities and write the resulting Entity IDs to the instances array
var instances = new NativeArray<Entity>(500, Allocator.Temp);
EntityManager.Instantiate(entity, instances);

// Destroy all 500 entities
EntityManager.DestroyEntity(instances);

Back to Capsicum reference

 ExclusiveEntityTransaction

ExclusiveEntityTransaction

ExclusiveEntityTransaction is an API to create & destroy entities from a job. The purpose is to enable procedural generation scenarios where instantiation on big scale must happen on jobs. As the name implies it is exclusive to any other access to the EntityManager.

ExclusiveEntityTransaction should be used on a manually created World that acts as a staging area to construct & setup entities.

After the job has completed you can end the ExclusiveEntityTransaction and use EntityManager.MoveEntitiesFrom(EntityManager srcEntities); to move the entities to an active World.

Back to Capsicum reference

 GameObjectEntity

GameObjectEntity

ECS ships with the GameObjectEntity component. It is a MonoBehaviour [https://docs.unity3d.com/ScriptReference/MonoBehaviour.html]. In OnEnable, the GameObjectEntity component creates an Entity with all components on the GameObject. As a result the full GameObject and all its components are now iterable by ComponentSystem classes.

Note: for the time being, you must add a GameObjectEntity component on each GameObject that you want to be visible / iterable from the ComponentSystem.

Back to Capsicum reference

 Capsicum reference

Capsicum reference

Here is a quick reference of the features and concepts that have been introduced in this documentation by ECS, the C# Job System, and Burst. There is also a list of general computing terms that are useful to know when learning Unity Capsicum.

Note: This is not an exhaustive list and can be added to over time as Capsicum, and its related documentation, expands. Some documentation is located in the Unity Manual [https://docs.unity3d.com/Manual/index.html] or Script Reference [https://docs.unity3d.com/ScriptReference/index.html], as some Capsicum features are part of the Unity Engine and some features are available in related packages. Some definitions below are not completed or are a “work in progress” marked with WIP.

Table of contents

	Capsicum terms

	General computing terms

	Further information

Capsicum terms

	Archetype

	Allocator: Reference [https://docs.unity3d.com/ScriptReference/Unity.Collections.Allocator.html]|Manual [https://docs.unity3d.com/Manual/JobSystemNativeContainer.html] - see “NativeContainer Allocator”.

	AtomicSafetyHandle: Reference [https://docs.unity3d.com/ScriptReference/Unity.Collections.LowLevel.Unsafe.AtomicSafetyHandle.html]|Manual [https://docs.unity3d.com/Manual/JobSystemNativeContainer.html] - see “NativeContainer and the safety system”.

	Barrier

	Batch: Manual [https://docs.unity3d.com/Manual/JobSystemParallelForJobs.html] - see “Scheduling ParallelFor jobs”.

	Burst compiler

	Burst inspector

	C# Job System: Manual [https://docs.unity3d.com/Manual/JobSystem.html]

	Chunk iteration

	Component

	ComponentData

	ComponentDataArray

	ComponentDataFromEntity

	ComponentDataWrapper

	ComponentGroup

	ComponentSystem

	ComponentType

	Custom JobTypes

	Custom NativeContainers

	DisposeSentinel: Reference [https://docs.unity3d.com/ScriptReference/Unity.Collections.LowLevel.Unsafe.DisposeSentinel.html]|Manual [https://docs.unity3d.com/Manual/JobSystemNativeContainer.html] - see “NativeContainer and the safety system”.

	Dynamic Buffers

	ECS

	Entity

	EntityArchetype

	EntityCommandBuffer

	EntityData (?)

	EntityDataManager (?)

	EntityDebugger

	EntityManager

	ExclusiveEntityTransaction

	GameObjectEntity

	IComponentData

	IJob: Reference [https://docs.unity3d.com/ScriptReference/Unity.Jobs.IJob.html]|Manual [https://docs.unity3d.com/Manual/JobSystemCreatingJobs.html]

	IJobParallelFor: Reference [https://docs.unity3d.com/ScriptReference/Unity.Jobs.IJobParallelFor.html]|Manual [https://docs.unity3d.com/Manual/JobSystemParallelForJobs.html]

	IJobParallelForBatch - see introduction.

	IJobParallelForTransform: Reference [https://docs.unity3d.com/ScriptReference/Jobs.IJobParallelForTransform.html]|Manual [https://docs.unity3d.com/Manual/JobSystemParallelForTransformJobs.html]

	IJobProcessComponentData

	Injection

	innerloopBatchCount WIP

	ISharedComponentData

	Job: Manual [https://docs.unity3d.com/Manual/JobSystemJobSystems.html] - see “What is a job?”.

	JobComponentSystem

	Job debugger

	JobHandle: Reference [https://docs.unity3d.com/ScriptReference/Unity.Jobs.JobHandle.html]|Manual [https://docs.unity3d.com/Manual/JobSystemJobDependencies.html]

	Job queue: Manual [https://docs.unity3d.com/Manual/JobSystemJobSystems.html] - see “What is a job system?”

	MeshInstanceRenderer

	NativeArray: Reference [https://docs.unity3d.com/ScriptReference/Unity.Collections.NativeArray_1.html]|Manual [https://docs.unity3d.com/Manual/JobSystemNativeContainer.html] - see “What types of NativeContainer are available?”.

	NativeContainer: Reference [https://docs.unity3d.com/ScriptReference/Unity.Collections.LowLevel.Unsafe.NativeContainerAttribute.html]|Manual [https://docs.unity3d.com/Manual/JobSystemNativeContainer.html]

	NativeHashMap WIP

	NativeList WIP

	NativeQueue WIP

	NativeSlice: Reference [https://docs.unity3d.com/ScriptReference/Unity.Collections.NativeSlice_1.html]|Manual [https://docs.unity3d.com/Manual/JobSystemNativeContainer.html] - see “What types of NativeContainer are available?”.

	Safety system [https://docs.unity3d.com/Manual/JobSystemSafetySystem.html] (in the C# Job System [https://docs.unity3d.com/Manual/JobSystem])

	SharedComponent

	SharedComponentData

	SubtractiveComponent

	SystemStateComponentData

	SystemStateSharedComponentData

	System update order

	TransformSystem

	World

General computing terms

	AOT compilation

	Atomic operation

	Blittable types

	Cache lines

	Context switching [https://docs.unity3d.com/Manual/JobSystemMultithreading.html] - see the end of the page.

	Dependency

	JIT compilation

	Job system [https://docs.unity3d.com/Manual/JobSystemJobSystems.html]

	Logical CPU

	Main thread

	Managed code

	Memory layout (linear memory layout vs. continuous memory?)

	Memory leak

	Multicore

	Multithreading [https://docs.unity3d.com/Manual/JobSystemMultithreading.html]

	Native code

	Native memory

	Parallel computing

	Performant

	Race condition [https://docs.unity3d.com/Manual/JobSystemSafetySystem.html]

	SIMD

	Unmanaged code

	Worker threads

Further information

Check the Capsicum manual for more examples on usage, or the Capsicum cheat sheet for quick links to the code.

 Injection

Injection

Injection allows your system to declare its dependencies, while those dependencies are then automatically injected into the injected variables before OnCreateManager, OnDestroyManager, and OnUpdate.

Component Group Injection

ComponentGroup injection automatically creates a ComponentGroup based on the required component types.

This lets you iterate over all the entities matching those required component types.
Each index refers to the same Entity on all arrays.

class MySystem : ComponentSystem
{
 public struct Group
 {
 // ComponentDataArray lets us access IComponentData
 [ReadOnly]
 public ComponentDataArray<Position> Position;

 // ComponentArray lets us access any of the existing class Component
 public ComponentArray<Rigidbody> Rigidbodies;

 // Sometimes it is necessary to not only access the components
 // but also the Entity ID.
 public EntityArray Entities;

 // The GameObject Array lets us retrieve the game object.
 // It also constrains the group to only contain GameObject based entities.
 public GameObjectArray GameObjects;

 // Excludes entities that contain a MeshCollider from the group
 public SubtractiveComponent<MeshCollider> MeshColliders;

 // The Length can be injected for convenience as well
 public int Length;
 }
 [Inject] private Group m_Group;

 protected override void OnUpdate()
 {
 // Iterate over all entities matching the declared ComponentGroup required types
 for (int i = 0; i != m_Group.Length; i++)
 {
 m_Group.Rigidbodies[i].position = m_Group.Position[i].Value;

 Entity entity = m_Group.Entities[i];
 GameObject go = m_Group.GameObjects[i];
 }
 }
}

ComponentDataFromEntity injection

ComponentDataFromEntity<> can also be injected, this lets you get / set the ComponentData by Entity from a job.

class PositionSystem : JobComponentSystem
{
 [Inject] ComponentDataFromEntity<Position> m_Positions;
}

Injecting other systems

class PositionSystem : JobComponentSystem
{
 [Inject] OtherSystem m_SomeOtherSystem;
}

Lastly you can also inject a reference to another system. This will populate the reference to the other system for you.

Back to Capsicum reference

 innerloopBatchCount

innerloopBatchCount

WIP

Unity Scripting API [https://docs.unity3d.com/2018.1/Documentation/ScriptReference/Unity.Jobs.IJobParallelForExtensions.Schedule.html]: “innerloopBatchCount: Granularity in which workstealing is performed. A value of 32, means the job queue will steal 32 iterations and then perform them in an efficient inner loop.”

See also: batch [https://docs.unity3d.com/Manual/JobSystemParallelForJobs.html] - see “Scheduling ParallelFor jobs.”

Back to Capsicum reference

TODO: Update content based on latest version of the C# Job System Manual [https://docs.unity3d.com/Manual/JobSystem.html] and Fabrice’s description.

 JIT compilation

JIT compilation

General computing term. JIT stands for “Just-in-time”.

Wikipedia [https://en.wikipedia.org/wiki/Just-in-time_compilation]: “In computing, just-in-time (JIT) compilation, also known as dynamic translation, is a way of executing computer code that involves compilation during execution of a program – at run time – rather than prior to execution.”

See also: AOT compilation.

Back to Capsicum reference

 JobComponentSystem

JobComponentSystem

Automatic job dependency management

Managing dependencies is hard. This is why in JobComponentSystem we are doing it automatically for you. The rules are simple: jobs from different systems can read from IComponentData of the same type in parallel. If one of the jobs is writing to the data then they can’t run in parallel and will be scheduled with a dependency between the jobs.

public class RotationSpeedSystem : JobComponentSystem
{
 [BurstCompile]
 struct RotationSpeedRotation : IJobProcessComponentData<Rotation, RotationSpeed>
 {
 public float dt;

 public void Execute(ref Rotation rotation, [ReadOnly]ref RotationSpeed speed)
 {
 rotation.value = math.mul(math.normalize(rotation.value), quaternion.axisAngle(math.up(), speed.speed * dt));
 }
 }

 // Any previously scheduled jobs reading/writing from Rotation or writing to RotationSpeed
 // will automatically be included in the inputDeps dependency.
 protected override JobHandle OnUpdate(JobHandle inputDeps)
 {
 var job = new RotationSpeedRotation() { dt = Time.deltaTime };
 return job.Schedule(this, 64, inputDeps);
 }
}

How does this work?

All jobs and thus systems declare what ComponentTypes they read or write to. As a result when a JobComponentSystem returns a JobHandle [https://docs.unity3d.com/ScriptReference/Unity.Jobs.JobHandle.html] it is automatically registered with the EntityManager and all the types including the information about if it is reading or writing.

Thus if a system writes to component A, and another system later on reads from component A, then the JobComponentSystem looks through the list of types it is reading from and thus passes you a dependency against the job from the first system.

JobComponentSystem simply chains jobs as dependencies where needed and thus causes no stalls on the main thread. But what happens if a non-job ComponentSystem accesses the same data? Because all access is declared, the ComponentSystem automatically completes all jobs running against component types that the system uses before invoking OnUpdate.

Dependency management is conservative & deterministic

Dependency management is conservative. ComponentSystem simply tracks all ComponentGroupobjects ever used and stores which types are being written or read based on that. (So if you inject an ComponentDataArray or use IJobProcessComponentData once but skip using it sometimes, then we will create dependencies against all ComponentGroup objects that have ever been used by that ComponentSystem.)

Also when scheduling multiple jobs in a single system, dependencies must be passed to all jobs even though different jobs may need less dependencies. If that proves to be a performance issue the best solution is to split a system into two.

The dependency management approach is conservative. It allows for deterministic and correct behaviour while providing a very simple API.

Sync points

All structural changes have hard sync points. CreateEntity, Instantiate, Destroy, AddComponent, RemoveComponent, SetSharedComponentData all have a hard sync point. Meaning all jobs scheduled through JobComponentSystem will be completed before creating the Entity, for example. This happens automatically. So for instance: calling EntityManager.CreateEntity in the middle of the frame might result in a large stall waiting for all previously scheduled jobs in the World to complete.

See EntityCommandBuffer for more on avoiding sync points when creating entities during game play.

Multiple Worlds

Every World has its own EntityManager and thus a separate set of JobHandle dependency management. A hard sync point in one world will not affect the other World. As a result, for streaming and procedural generation scenarios, it is useful to create entities in one World and then move them to another World in one transaction at the beginning of the frame.

See ExclusiveEntityTransaction for more on avoiding sync points for procedural generation & streaming scenarios and System update order.

Back to Capsicum reference

 Logical CPU

Logical CPU

General computing term. Also known as logical processors.

Directions on Microsoft [https://www.directionsonmicrosoft.com/licensing/30-licensing/3420-sql-server-2012-adopts-per-core-licensing-model.html]: “Logical processors subdivide a server’s processing power to enable parallel processing.”

Unix Stack Exchange [https://unix.stackexchange.com/questions/88283/so-what-are-logical-cpu-cores-as-opposed-to-physical-cpu-cores]: “Physical cores are [the] number of physical cores, actual hardware components. Logical cores are the number of physical cores times the number of threads that can run on each core through the use of hyperthreading. For example, my 4-core processor runs two threads per core, so I have 8 logical processors.”

How-To Geek [https://www.howtogeek.com/194756/cpu-basics-multiple-cpus-cores-and-hyper-threading-explained/]: “A single physical CPU core with hyper-threading appears as two logical CPUs to an operating system. The CPU is still a single CPU, so it’s a little bit of a cheat. While the operating system sees two CPUs for each core, the actual CPU hardware only has a single set of execution resources for each core. The CPU pretends it has more cores than it does, and it uses its own logic to speed up program execution. In other words, the operating system is tricked into seeing two CPUs for each actual CPU core. Hyper-threading allows the two logical CPU cores to share physical execution resources. This can speed things up somewhat—if one virtual CPU is stalled and waiting, the other virtual CPU can borrow its execution resources. Hyper-threading can help speed your system up, but it’s nowhere near as good as having actual additional cores.”

See also: multithreading [https://docs.unity3d.com/Manual/JobSystemMultithreading.html] and multicore.

Back to Capsicum reference

 Main thread

Main thread

General computing term.

Geeks for Geeks [https://www.geeksforgeeks.org/main-thread-java/]: “When a …program starts up, one thread begins running immediately. This is usually called the main thread of our program, because it is the one that is executed when our program begins.

Properties:

	It is the thread from which other “child” threads will be spawned.

	Often, it must be the last thread to finish execution because it performs various shutdown actions.”

Many programming languages have a Main method that is the starting point of an application. The main thread will find this method and invoke it. Your program will run on the main thread unless you create additional threads yourself. For more information, see Stackoverflow [https://stackoverflow.com/questions/17669159/what-is-the-relation-between-the-main-method-and-main-thread-in-java].

Note: In ECS we aim to remove as much code as possible out of the main thread and into jobs.

See also: multithreading [https://docs.unity3d.com/Manual/JobSystemMultithreading.html] and worker threads.

Back to Capsicum reference

 Managed code

Managed code

General computing term.

Wikipedia [https://en.wikipedia.org/wiki/Managed_code]: “Managed code is computer program code that requires and will execute only under the management of a Common Language Runtime virtual machine, typically the .NET Framework, or Mono. The term was coined by Microsoft.

Managed code is the compiler output of source code written in one of over twenty high-level programming languages that are available for use with the Microsoft .NET Framework, including C#, J#, Microsoft Visual Basic .NET, Microsoft JScript and .NET…

Managed code in the Microsoft .Net Framework is defined according to the Common Intermediate Language specification.

See also: unmanaged code.

Back to Capsicum reference

 Memory leak

Memory leak

General computing term.

Wikipedia [https://en.wikipedia.org/wiki/Memory_leak]: “In computer science, a memory leak is a type of resource leak that occurs when a computer program incorrectly manages memory allocations in such a way that memory which is no longer needed is not released. In object-oriented programming, a memory leak may happen when an object is stored in memory but cannot be accessed by the running code. A memory leak has symptoms similar to a number of other problems and generally can only be diagnosed by a programmer with access to the program’s source code… A memory leak reduces the performance of the computer by reducing the amount of available memory. Eventually, in the worst case, too much of the available memory may become allocated and all or part of the system or device stops working correctly, the application fails, or the system slows down vastly…”

See also: DisposeSentinel [https://docs.unity3d.com/Manual/JobSystemNativeContainer.html] - see “NativeContainer and the safety system.”

Back to Capsicum reference

 Multicore

Multicore

General computing term.

Wikipedia [https://en.wikipedia.org/wiki/Multi-core_processor]: “A multi-core processor is a single computing component with two or more independent processing units called cores, which read and execute program instructions. The instructions are ordinary CPU instructions… but the single processor can run multiple instructions on separate cores at the same time, increasing overall speed for programs amenable to parallel computing.”

See also: logical CPU.

Back to Capsicum reference

 NativeHashMap

NativeHashMap

WIP

NativeContainer [https://docs.unity3d.com/Manual/JobSystemNativeContainer.html] created as part of Unity ECS.

It has special rules for allowing safe and deterministic write access from ParallelFor jobs [https://docs.unity3d.com/Manual/JobSystemParallelForJobs.html]. The NativeHashMap.Concurrent method lets you add items in parallel from IJobParallelFor [https://docs.unity3d.com/ScriptReference/Unity.Jobs.IJobParallelFor.html].

See also: Wikipedia - Hash table [https://en.wikipedia.org/wiki/Hash_table].

Back to Capsicum reference

 NativeList

NativeList

WIP

NativeContainer [https://docs.unity3d.com/Manual/JobSystemNativeContainer.html] created as part of Unity ECS.

Back to Capsicum reference

 Native memory

Native memory

General computing term.

IBM [https://www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.diagnostics.healthcenter.doc/topics/memory_overview.html]: “Native memory is the memory provided to the application process by the operating system. The memory is used for heap storage [https://en.wikibooks.org/wiki/Memory_Management/Stacks_and_Heaps] and other purposes.”

Geode [https://cwiki.apache.org/confluence/display/GEODE/Troubleshooting+Native+Memory]: “The available native memory on a machine is the difference between the machine’s physical RAM and the memory used by the processes running on it. It is actually even less than that since the operating system also uses some of this memory.”

.NET Memory Profiler [https://memprofiler.com/online-docs/default.htm#!nativememorypage.htm]: “Native memory is the memory managed by the operating system, rather than the Common Language Runtime [https://en.wikipedia.org/wiki/Common_Language_Runtime].”

Back to Capsicum reference

 NativeQueue

NativeQueue

WIP

NativeContainer [https://docs.unity3d.com/Manual/JobSystemNativeContainer.html] created as part of Unity ECS.

Back to Capsicum reference

 Performant

Performant

General computing term.

Wiktionary [https://en.wiktionary.org/wiki/performant]: “Capable of achieving an adequate or excellent level of performance or efficiency.”

Techopedia [https://www.techopedia.com/definition/28231/performant]: “Performant means that something is working correctly or well enough to be considered functional. In a technology context, this term is believed to have originated with programmers seeking a concise word to express that a system or program will work, but may not yet be optimal. Performant may have come from a portmanteau of performance and conformant - as in working and meeting existing standards.”

Stackoverflow [https://stackoverflow.com/questions/2112743/what-does-performant-software-actually-mean]: “Performant is a word that was made up by software developers to describe software that performs well, in whatever way you want to define performance.”

Back to Capsicum reference

 Shared ComponentData

Shared ComponentData

IComponentData is appropriate for data that varies between entities, such as storing a World position. ISharedComponentData is useful when many entities have something in common, for example in the Boid demo we instantiate many entities from the same Prefab [https://docs.unity3d.com/Manual/Prefabs.html] and thus the MeshInstanceRenderer between many Boid entities is exactly the same.

[System.Serializable]
public struct MeshInstanceRenderer : ISharedComponentData
{
 public Mesh mesh;
 public Material material;

 public ShadowCastingMode castShadows;
 public bool receiveShadows;
}

In the Boid demo we never change the MeshInstanceRenderer component, but we do move all the entities’ Transform [https://docs.unity3d.com/Manual/class-Transform.html] every frame.

The great thing about ISharedComponentData is that there is literally zero memory cost on a per Entity basis.

We use ISharedComponentData to group all entities using the same InstanceRenderer data together and then efficiently extract all matrices for rendering. The resulting code is simple & efficient because the data is laid out exactly as it is accessed.

	MeshInstanceRendererSystem.cs

Some important notes about SharedComponentData:

	Entities with the same SharedComponentData are grouped together in the same Chunks. The index to the SharedComponentData is stored once per Chunk, not per Entity. As a result SharedComponentData have zero memory overhead on a per Entity basis.

	Using ComponentGroup we can iterate over all entities with the same type.

	Additionally we can use ComponentGroup.SetFilter() to iterate specifically over entities that have a specific SharedComponentData value. Due to the data layout this iteration has low overhead.

	Using EntityManager.GetAllUniqueSharedComponents we can retrieve all unique SharedComponentData that is added to any alive entities.

	SharedComponentData are automatically reference counted [https://en.wikipedia.org/wiki/Reference_counting].

	SharedComponentData should change rarely. Changing a SharedComponentData involves using memcpy [https://msdn.microsoft.com/en-us/library/aa246468(v=vs.60).aspx] to copy all ComponentData for that Entity into a different Chunk.

Back to Capsicum reference

 SIMD

SIMD

General computing term. SIMD stands for “Single Instruction Multiple Data”.

Wikipedia [https://en.wikipedia.org/wiki/SIMD]: “SIMD… describes computers with multiple processing elements that perform the same operation on multiple data points simultaneously. Thus, such machines exploit data level parallelism [https://en.wikipedia.org/wiki/Data_parallelism], but not concurrency [https://en.wikipedia.org/wiki/Concurrent_computing]: there are simultaneous (parallel) computations, but only a single process (instruction) at a given moment… In other words, if the SIMD system works by loading up eight data points at once, the add operation being applied to the data will happen to all eight values at the same time.

See also: ParallelFor jobs [https://docs.unity3d.com/Manual/JobSystemParallelForJobs.html].

Back to Capsicum reference

 SystemStateComponents

SystemStateComponents

The purpose of SystemStateComponentData is to allow you to track resources internal to a system and have the opportunity to appropriately create and destroy those resources as needed without relying on individual callbacks.

SystemStateComponentData and SystemStateSharedComponentData are exactly like ComponentData and SharedComponentData, respectively, except in one important respect:

	SystemStateComponentData is not deleted when an Entity is destroyed.

DestroyEntity is shorthand for

	Find all components which reference this particular Entity ID.

	Delete those components.

	Recycle the Entity id for reuse.

However, if SystemStateComponentData is present, it is not removed. This gives a system the opportunity to cleanup any resources or state associated with an Entity ID. The Entity ID will only be reused once all SystemStateComponentData has been removed.

Motivation

	Systems may need to keep an internal state based on ComponentData. For instance, resources may be allocated.

	Systems need to be able to manage that state as values and state changes are made by other systems. For example, when values in components change, or when relevant components are added or deleted.

	“No callbacks” is an important element of the ECS design rules.

Concept

The general use of SystemStateComponentData is expected to mirror a user component, providing the internal state.

For instance, given:

	FooComponent (ComponentData, user assigned)

	FooStateComponent (SystemComponentData, system assigned)

Detecting Component Add

When user adds FooComponent, FooStateComponent does not exist. The FooSystem update queries for FooComponent without FooStateComponent and can infer that they have been added. At that point, the FooSystem will add the FooStateComponent and any needed internal state.

Detecting Component Remove

When user removes FooComponent, FooStateComponent still exists. The FooSystem update queries for FooStateComponent without FooComponent and can infer that they have been removed. At that point, the FooSystem will remove the FooStateComponent and fix up any needed internal state.

Detecting Destroy Entity

DestroyEntity is actually a shorthand utility for:

	Find components which reference given Entity ID.

	Delete components found.

	Recycle Entity ID.

However, SystemStateComponentData are not removed on DestroyEntity and the Entity ID is not recycled until the last component is deleted. This gives the system the opportunity to clean up the internal state in the exact same way as with component removal.

SystemStateComponent

A SystemStateComponentData is analogous to a ComponentData and used similarly.

struct FooStateComponent : ISystemStateComponentData
{
}

Visibility of a SystemStateComponentData is also controlled in the same way as a component (using private, public, internal) However, it’s expected, as a general rule, that a SystemStateComponentData will be ReadOnly outside the system that creates it.

SystemStateSharedComponent

A SystemStateSharedComponentData is analogous to a SharedComponentData and used similarly.

struct FooStateSharedComponent : ISystemStateSharedComponentData
{
 public int Value;
}

Back to Capsicum reference

 System update order

System update order

In ECS all systems are updated on the main thread. The order in which the are updated is based on a set of constraints and an optimization pass which tries to order the system in a way so that the time between scheduling a job and waiting for it is as long as possible.

The attributes to specify update order of systems are [UpdateBefore(typeof(OtherSystem))] and [UpdateAfter(typeof(OtherSystem))]. In addition to update before or after other ECS systems it is possible to update before or after different phases of the Unity PlayerLoop by using typeof(UnityEngine.Experimental.PlayerLoop.FixedUpdate [https://docs.unity3d.com/2018.1/Documentation/ScriptReference/Experimental.PlayerLoop.FixedUpdate.html]) or one of the other phases in the same namespace.

The UpdateInGroup attribute will put the system in a group and the same UpdateBefore and UpdateAfter attributes can be specified on a group or with a group as the target of the before/after dependency.

To use UpdateInGroup you need to create and empty class and pass the type of that to the UpdateInGroup attribute

public class UpdateGroup
{}

[UpdateInGroup(typeof(UpdateGroup))]
class MySystem : ComponentSystem

Back to Capsicum reference

 TransformSystem

TransformSystem

TransformSystem is responsible for updating the LocalToWorld transformation matrices used by other systems (including rendering).

Updating a TransformSystem

By default, Unity updates a single TransformSystem instance each frame. EndFrameTransformSystem is updated before EndFrameBarrier and requires no additional work.

In cases where transform data is required to be updated at additional points in the frame, the suggested methods are:

	Create additional instance(s) of TransformSystem and use UpdateBefore/UpdateAfter attributes to control where they are updated.

For example:

 [UpdateBefore(typeof(EndFrameBarrier))]
 public class EndFrameTransformSystem : TransformSystem<EndFrameBarrier>
 {
 }

	Create additional instance of TransformSystem and update after every ComponentSystem (includes barriers, excludes JobComponentSystem) by using [ComponentSystemPatch] attribute. Be aware that the overhead for updating the TransformSystem after every ComponentSystem can be very high when the number of ComponentSystemclasses is large.

For example:

 [ComponentSystemPatch]
 public class PatchTransformSystem : TransformSystem<UserSystem>
 {
 }

	Manually update your systems. This is the expected method for more complex applications.

Updating Position, Rotation, Scale

The only requirement for TransfromSystem is that one of the following components is associated with an Entity:

 public struct Position : IComponentData
 {
 public float3 Value;
 }

 public struct Rotation : IComponentData
 {
 public quaternion Value;
 }

 public struct Scale : IComponentData
 {
 public float3 Value;
 }

TransformSystem will add the LocalToWorld component and update the matrix based on the values in your selected associated components (Position, Rotation, and Scale). LocalToWorld does not need to be added by the user or other systems.

 public struct LocalToWorld : ISystemStateComponentData
 {
 public float4x4 Value;
 }

LocalToWorld is expected to be [ReadOnly] by other systems. Be aware that anything written to this component will be overwritten and its behavior during update is undefined if written to.

Freezing transforms

In many cases, individual transforms are never expected to change at runtime. For these types of objects, if a Static component is added:

 public struct Static : IComponentData
 {
 }

They will cease to be updated after the LocalToWorld matrix has been created and updated for the first time. Any changes to associated Position, Rotation, or Scale components will be ignored. Marking Static transforms can substantially reduce the amount of work a TransformSystem needs to do which will improve performance.

The process of freezing is:

	TransformSystem update queries for Static components.

	TransformSystem adds FrozenPending component.

	TransformSystem updates the LocalToWorld component normally.

	On the next TransformSystem update, queries for FrozenPending components and adds Frozen component.

	TransformSystem ignores Position, Rotation, or Scale components if there is an associated Frozen component.

If necessary, users can detect if LocalToWorld matrix is frozen by existence of a Frozen component. Generally however, identifying static objects by the existence of the Static component is sufficient.

Custom transforms

In cases where user systems require custom transformation matrices and updates, the TransformSystem will ignore components associated with a CustomLocalToWorld component.

 public struct CustomLocalToWorld : IComponentData
 {
 public float4x4 Value;
 }

If a CustomLocalToWorld component exists, it is expected that a user system will write the appropriate data. Position, Rotation, Scale, Static, and any other TransformSystem components are ignored.

Attaching transformations

Attaching transformations (transformation hierarchies) is controlled by separate “event” or “side-channel” entities associated with an Attach component.

 public struct Attach : IComponentData
 {
 public Entity Parent;
 public Entity Child;
 }

To attach a Child Entity to a Parent Entity, create a new Entity with an associated Attach component, assigning the respective values.

For example:

 var parent = m_Manager.CreateEntity(typeof(Position), typeof(Rotation));
 var child = m_Manager.CreateEntity(typeof(Position));
 var attach = m_Manager.CreateEntity(typeof(Attach));

 m_Manager.SetComponentData(parent, new Position {Value = new float3(0, 2, 0)});
 m_Manager.SetComponentData(parent, new Rotation {Value = quaternion.lookRotation(new float3(1.0f, 0.0f, 0.0f), math.up())});
 m_Manager.SetComponentData(child, new Position {Value = new float3(0, 0, 1)});
 m_Manager.SetComponentData(attach, new Attach {Parent = parent, Child = child});

	The Attach component, and associated Entity, will be destroyed by the TransformSystem on update.

	Values in Position, Rotation, and Scale components will be interpreted as relative to parent space.`

	Attached, Parent, and LocalToParent components will be associated with the Child Entity.

 public struct Attached : IComponentData
 {
 }

 public struct Parent : ISystemStateComponentData
 {
 public Entity Value;
 }

 public struct LocalToParent : ISystemStateComponentData
 {
 public float4x4 Value;
 }

Detaching transformations

To detach a child from a parent, remove the Attached component from the child. When the TransformSystem is updated, the Parent component will be removed. Values in Position, Rotation, and Scale components will be interpreted as relative to World space.

Reading World values

The LocalToWorld matrix can be used to retrieve World positions.
For example:

var childWorldPosition = m_Manager.GetComponentData<LocalToWorld>(child).Value.c3

Back to Capsicum reference

 Unmanaged code

Unmanaged code

General computing term. Also known as native code.

Wikipedia [https://en.wikipedia.org/wiki/Managed_code]: “…Unmanaged code refers to programs written in C, C++, and other languages that do not need a [common language] runtime [virtual machine] to execute.”

Stackoverflow [https://stackoverflow.com/questions/855756/difference-between-native-and-managed-code?answertab=votes#tab-top]: “Native code is the code whose memory is not ‘managed’, as in, memory isn’t freed for you (C++’ delete and C’s free, for instance), no reference counting [https://en.wikipedia.org/wiki/Reference_counting], no garbage collection [https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)].”

See also: managed code.

Back to Capsicum reference

 Worker threads

Worker threads

General computing term. Also known as thread pooling.

Wikipedia [https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading]: “By moving such long-running tasks to a worker thread that runs concurrently with the main execution thread, it is possible for the application to remain responsive to user input while executing tasks in the background.”

Wikipedia [https://en.wikipedia.org/wiki/Thread_pool]: “…A thread pool maintains multiple threads waiting for tasks to be allocated for concurrent execution by the supervising program. By maintaining a pool of threads, the model increases performance and avoids latency in execution due to frequent creation and destruction of threads for short-lived tasks. The number of available threads is tuned to the computing resources available to the program, such as parallel processors, cores, memory, and network sockets.”

See also: multithreading [https://docs.unity3d.com/Manual/JobSystemMultithreading.html], multicore, and main thread.

Back to Capsicum reference

 World

World

A World owns both an EntityManager and a set of ComponentSystems. You can create as many World objects as you like. Commonly you would create a simulation World and rendering or presentation World.

By default we create a single World when entering Play Mode and populate it with all available ComponentSystem objects in the project, but you can disable the default World creation and replace it with your own code via a global define.

	Default World creation code

	Automatic bootstrap entry point

Note: We are currently working on multiplayer demos, that will show how to work in a setup with separate simulation & presentation World objects. This is a work in progress, so right now we have no clear guidelines and are likely missing features in ECS to enable it.

Back to Capsicum reference

 Getting started

Getting started

What are we trying to solve?

When making games with GameObject/MonoBehaviour, it is easy to write code that ends up being difficult to read, maintain and optimize. This is the result of a combination of factors: object-oriented model [https://en.wikipedia.org/wiki/Object-oriented_programming], non-optimal machine code compiled from Mono, garbage collection [https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)] and single threaded [https://en.wikipedia.org/wiki/Thread_(computing)#Single_threading] code.

Entity-component-system to the rescue

An Entity-component-system [https://en.wikipedia.org/wiki/Entity%E2%80%93component%E2%80%93system] (ECS) is a way of writing code that focuses on the actual problems you are solving: the data and behavior that make up your game.

In addition to being a better way of approaching game programming for design reasons, using ECS puts you in an ideal position to leverage Unity’s job system and Burst compiler, letting you take full advantage of today’s multicore processors.

We have exposed Unity’s native job system so that users can gain the benefits of multithreaded [https://en.wikipedia.org/wiki/Thread_(computing)] batch processing from within their ECS C# scripts. The native job system has built in safety features for detecting race conditions [https://en.wikipedia.org/wiki/Race_condition].

However we need to introduce a new way of thinking and coding to take full advantage of the job system.

What is ECS?

MonoBehavior - A dear old friend

MonoBehaviours contain both the data and the behaviour. This component will simply rotate the Transform component every frame.

using UnityEngine;

class Rotator : MonoBehaviour
{
 // The data - editable in the inspector
 public float speed;

 // The behaviour - Reads the speed value from this component
 // and changes the rotation of the Transform component.
 void Update()
 {
 transform.rotation *= Quaternion.AngleAxis(Time.deltaTime * speed, Vector3.up);
 }
}

However MonoBehaviour inherits from a number of other classes; each containing their own set of data - none of which are in use by the script above. Therefore we have just wasted a bunch of memory for no good reason. So we need to think about what data we really need to optimize the code.

ComponentSystem - A step into a new era

In the new model the component only contains the data.

The ComponentSystem contains the behavior. One ComponentSystem is responsible for updating all GameObjects with a matching set of components.

using Unity.Entities;
using UnityEngine;

class Rotator : MonoBehaviour
{
 // The data - editable in the inspector
 public float Speed;
}

class RotatorSystem : ComponentSystem
{
 struct Group
 {
 // Define what components are required for this
 // ComponentSystem to handle them.
 public Transform Transform;
 public Rotator Rotator;
 }

 override protected void OnUpdate()
 {
 // We can immediately see a first optimization.
 // We know delta time is the same between all rotators,
 // so we can simply keep it in a local variable
 // to get better performance.
 float deltaTime = Time.deltaTime;

 // ComponentSystem.GetEntities<Group>
 // lets us efficiently iterate over all GameObjects
 // that have both a Transform & Rotator component
 // (as defined above in Group struct).
 foreach (var e in GetEntities<Group>())
 {
 e.Transform.rotation *= Quaternion.AngleAxis(e.Rotator.Speed * deltaTime, Vector3.up);
 }
 }
}

Hybrid ECS: Using ComponentSystem to work with existing GameObject & components

There is a lot of existing code based on MonoBehaviour, GameObject and friends. We want to make it easy to work with existing GameObjects and existing components. But make it easy to transition one piece at a time to the ComponentSystem style approach.

In the example above you can see that we simply iterate over all components that contain both Rotator and Transform components.

How does the Component System know about Rotator and Transform?

In order to iterate over components like in the Rotator example, those entities have to be known to the EntityManager.

ECS ships with the GameObjectEntity component. On OnEnable, the GameObjectEntity component creates an entity with all components on the GameObject. As a result the full GameObject and all its components are now iterable by ComponentSystems.

Thus for the time being you must add a GameObjectEntity component on each GameObject that you want to be visible / iterable from the ComponentSystem.

How does the ComponentSystem get created?

Unity automatically creates a default world on startup and populates it with all Component Systems in the project. Thus if you have a game object with the the necessary components and a GameObjectEntity, the System will automatically start executing with those components.

What does this mean for my game?

It means that you can one by one, convert behavior from MonoBehaviour.Update methods into ComponentSystems. You can in fact keep all your data in a MonoBehaviour, and this is in fact a very simple way of starting the transition to ECS style code.

So your scene data remains in GameObjects & components. You continue to use GameObject.Instantiate [https://docs.unity3d.com/ScriptReference/Object.Instantiate.html] to create instances etc.

You simply move the contents of your MonoBehaviour.Update into a ComponentSystem.OnUpdate method. The data is kept in the same MonoBehaviour or other components.

What you get:

	Separation of data & behavior resulting in cleaner code

	Systems operate on many objects in batch, avoiding per object virtual calls. It is easy to apply optimizations in batch. (See deltaTime optimization above.)

	You can continue to use existing inspectors, editor tools etc

What you don’t get:

	Instantiation time will not improve

	Load time will not improve

	Data is accessed randomly, no linear memory access guarantees

	No multicore

	No SIMD [https://en.wikipedia.org/wiki/SIMD]

So using ComponentSystem, GameObject and MonoBehaviour is a great first step to writing ECS code. It gives you some quick performance improvements, but it does not tap into the full range of performance benefits available.

Pure ECS: Full-on performance - IComponentData & Jobs

One motivation to use ECS is because you want your game to have optimal performance. By optimal performance we mean that if you were to hand write all of your code using SIMD intrinsics (custom data layouts for each loop) then you would end up with similar performance to what you get when writing simple ECS code.

The C# job system does not support managed class types; only structs and NativeContainers. So only IComponentData can be safely accessed in a C# Job.

The EntityManager makes hard guarantees about linear memory layout [https://en.wikipedia.org/wiki/Flat_memory_model] of the component data. This is an important part of the great performance you can achieve with C# jobs using IComponentData.

using System;
using Unity.Entities;

// The rotation speed component simply stores the Speed value
[Serializable]
public struct RotationSpeed : IComponentData
{
 public float Value;
}

// This wrapper component is currently necessary to add ComponentData to GameObjects.
// In the future we want to make this wrapper component automatic.
public class RotationSpeedComponent : ComponentDataWrapper<RotationSpeed> { }

using Unity.Collections;
using Unity.Entities;
using Unity.Jobs;
using Unity.Burst;
using Unity.Mathematics;
using Unity.Transforms;
using UnityEngine;

// Using IJobProcessComponentData to iterate over all entities matching the required component types.
// Processing of entities happens in parallel. The main thread only schedules jobs.
public class RotationSpeedSystem : JobComponentSystem
{
 // IJobProcessComponentData is a simple way of iterating over all entities given the set of required compoenent types.
 // It is also more efficient than IJobParallelFor and more convenient.
 [BurstCompile]
 struct RotationSpeedRotation : IJobProcessComponentData<Rotation, RotationSpeed>
 {
 public float dt;

 public void Execute(ref Rotation rotation, [ReadOnly]ref RotationSpeed speed)
 {
 rotation.Value = math.mul(math.normalize(rotation.Value), quaternion.axisAngle(math.up(), speed.Value * dt));
 }
 }

 // We derive from JobComponentSystem, as a result the system proviides us
 // the required dependencies for our jobs automatically.
 //
 // IJobProcessComponentData declares that it will read RotationSpeed and write to Rotation.
 //
 // Because it is declared the JobComponentSystem can give us a Job dependency, which contains all previously scheduled
 // jobs that write to any Rotation or RotationSpeed.
 // We also have to return the dependency so that any job we schedule
 // will get registered against the types for the next System that might run.
 // This approach means:
 // * No waiting on main thread, just scheduling jobs with dependencies (Jobs only start when dependencies have completed)
 // * Dependencies are figured out automatically for us, so we can write modular multithreaded code
 protected override JobHandle OnUpdate(JobHandle inputDeps)
 {
 var job = new RotationSpeedRotation() { dt = Time.deltaTime };
 return job.Schedule(this, 64, inputDeps);
 }
}

 C# Job System features in detail

C# Job System features in detail

Note: The main content of this page has migrated to the Capsicum reference. C# Job System related features are listed below in alphabetical order, with a short description and links to further information about it. This page is not an exhaustive list and can be added to over time as the C# Job System, and its related documentation expands. If you spot something that is out-of-date or broken links, then make sure to let us know in the forums [http://unity3d.com/performance-by-default] or as an issue [https://github.com/Unity-Technologies/EntityComponentSystemSamples/issues/new] in the repository.

Allocator

When creating a NativeContainer, you must specify the type of memory allocation you need. The allocation type depends on the length of time the job runs. This way you can tailor the allocation to get the best performance possible in each situation.

There are three Allocator [https://docs.unity3d.com/ScriptReference/Unity.Collections.Allocator.html] types for NativeContainer memory allocation and release. You need to specify the appropriate one when instantiating your NativeContainer.

For more information, see the NativeContainer [https://docs.unity3d.com/Manual/JobSystemNativeContainer.html] manual page - see “NativeContainer Allocator.”

AtomicSafetyHandle

TODO

##Batch

TODO

##DisposeSentinel

The DisposeSentinel detects memory leaks and gives you an error if you have not correctly freed your memory.

TODO

NativeArray

TODO

NativeContainer

TODO

IJob

##IJobParallelFor

TODO

IJobParallelforTransform job

TODO

Safety system

TODO

Further information

For more information on C# Job System features, see the C# Job System [https://docs.unity3d.com/Manual/JobSystem.html] Manual.

 UnsafeUtility

UnsafeUtility

Unity Scripting API [https://docs.unity3d.com/es/2018.1/ScriptReference/Unity.Collections.LowLevel.Unsafe.UnsafeUtility.html]: “Unsafe utility class.”

WIP

Unity.Collections.LowLevel.Unsafe.UnsafeUtility.cs exposes functions to facilitate working with native memory. Here you’ll find functions to call malloc and free, along with various utility functions such as memcpy. These functions can be called directly from user code.

Back to Capsicum reference

 Source

Source

	Forum: https://forum.unity.com/threads/parent-transforms-and-local-rotation.532417/#post-3513605

	Original project: https://github.com/avvie/ECS-Phyllotaxis

ECS-Phyllotaxis

Learning ECS - 50k Cubes in Phyllotaxis pattern

All of them rotating. testing to see an entity spawner and a system
[image: Screensot]

 Source

Source

	Forum: https://forum.unity.com/threads/parent-transforms-and-local-rotation.532417/#post-3513605

	Original project: https://github.com/avvie/ECS-Phyllotaxis

ECS-Phyllotaxis

Learning ECS - 50k Cubes in Phyllotaxis pattern

All of them rotating. testing to see an entity spawner and a system
[image: Screensot]

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/GlQ7sMB.png
- o

B Inspector Services B
[RotatingCubeSpawner M Static *
Tag (Untagged +| Layer [Default T
J_ Transform W 5,
Position X0 YO 7Al ()
Rotation X0 YO 7Al ()
Scale X1 Y Z 0

B 7 Game Object Entity (Script)
. Transform Position Component (Script)

. Copy Initial Transform Position From Game Object

. Spawn Random Circle Component (Script)

Script B SpawnRandomCircleComponent
Serialized Data

Prefab ® TestRotatingCube

Radius 25

Count 100

Add Component

_images/GyBUpSo.png
= Hierarchy
Create = @rAll

<+ RotationExample =
Main Camera
Directional Light
RotatingCubeSpawner

_images/6ca8e27fafa67a464899473502191ce7944a8955.jpg
/ w Q iy
Unity
atGDC
March 19 - 23,2018

_images/7WmSLyN.png
